Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Magn Reson Med ; 91(5): 2142-2152, 2024 May.
Article in English | MEDLINE | ID: mdl-38217450

ABSTRACT

PURPOSE: Various parameters of regional lung ventilation can be estimated using phase-resolved functional lung (PREFUL)-MRI. The parameter "ventilation correlation coefficient (Vent-CC)" was shown advantageous because it assesses the dynamics of regional air flow. Calculating Vent-CC depends on a voxel-wise comparison to a healthy reference flow curve. This work examines the effect of placing a reference region of interest (ROI) in various lung quadrants or in different coronal slices. Furthermore, algorithms for automated ROI selection are presented and compared in terms of test-retest repeatability. METHODS: Twenty-eight healthy subjects and 32 chronic obstructive pulmonary disease (COPD) patients were scanned twice using PREFUL-MRI. Retrospective analyses examined the homogeneity of air flow curves of various reference ROIs using cross-correlation. Vent-CC and ventilation defect percentage (VDP) calculated using various reference ROIs were compared using one-way analysis of variance (ANOVA). The coefficient of variation was calculated for Vent-CC and VDP when using different reference selection algorithms. RESULTS: Flow-volume curves were highly correlated between ROIs placed at various lung quadrants in the same coronal slice (r > 0.97) with no differences in Vent-CC and VDP (ANOVA: p > 0.5). However, ROIs placed at different coronal slices showed lower correlation coefficients and resulted in significantly different Vent-CC and VDP values (ANOVA: p < 0.001). Vent-CC and VDP showed higher repeatability when calculated using the presented new algorithm. CONCLUSION: In COPD and healthy cohorts, assessing regional ventilation dynamics using PREFUL-MRI in terms of the Vent-CC metric showed higher repeatability using a new algorithm for selecting a homogenous reference ROI from the same slice.


Subject(s)
Lung , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Retrospective Studies , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Respiration , Magnetic Resonance Imaging/methods , Pulmonary Ventilation
2.
J Magn Reson Imaging ; 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38214459

ABSTRACT

BACKGROUND: Non-contrast-enhanced 1 H magnetic resonance imaging (MRI) with full lung coverage shows promise for assessment of regional lung ventilation but a comparison with direct ventilation measurement using 19 F MRI is lacking. PURPOSE: To compare ventilation parameters calculated using 3D phase-resolved functional lung (PREFUL) MRI with 19 F MRI. STUDY TYPE: Prospective. POPULATION: Fifteen patients with asthma, 14 patients with chronic obstructive lung disease, and 13 healthy volunteers. FIELD STRENGTH/SEQUENCE: A 3D gradient-echo pulse sequence with golden-angle increment and stack-of-stars encoding at 1.5 T. ASSESSMENT: All participants underwent 3D PREFUL MRI and 19 F MRI. For 3D PREFUL, static regional ventilation (RVent) and dynamic flow-volume cross-correlation metric (FVL-CM) were calculated. For both parameters, ventilation defect percentage (VDP) values and ventilation defect (VD) maps (including a combination of both parameters [VDPCombined ]) were determined. For 19 F MRI, images from eight consecutive breaths under volume-controlled inhalation of perfluoropropane were acquired. Time-to-fill (TTF) and wash-in (WI) parameters were extracted. For all 19 F parameters, a VD map was generated and the corresponding VDP values were calculated. STATISTICAL TESTS: For all parameters, the relationship between the two techniques was assessed using a Spearman correlation (r). Differences between VDP values were compared using Bland-Altman analysis. For regional comparison of VD maps, spatial overlap and Sørensen-Dice coefficients were computed. RESULTS: 3D PREFUL VDP values were significantly correlated to VDP measures by 19 F (r range: 0.59-0.70). For VDPRVent , no significant bias was observed with VDP of the third and fourth breath (bias range = -6.8:7.7%, P range = 0.25:0.30). For VDPFVL-CM , no significant bias was found with VDP values of fourth-eighth breaths (bias range = -2.0:12.5%, P range = 0.12:0.75). The overall spatial overlap of all VD maps increased with each breath, ranging from 61% to 81%, stabilizing at the fourth breath. DATA CONCLUSION: 3D PREFUL MRI parameters showed moderate to strong correlation with 19 F MRI. Depending on the 3D PREFUL VD map, the best regional agreement was found to 19 F VD maps of third-fifth breath. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

3.
J Magn Reson Imaging ; 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37732541

ABSTRACT

BACKGROUND: Detection of pulmonary perfusion defects is the recommended approach for diagnosing chronic thromboembolic pulmonary hypertension (CTEPH). This is currently achieved in a clinical setting using scintigraphy. Phase-resolved functional lung (PREFUL) magnetic resonance imaging (MRI) is an alternative technique for evaluating regional ventilation and perfusion without the use of ionizing radiation or contrast media. PURPOSE: To assess the feasibility and image quality of PREFUL-MRI in a multicenter setting in suspected CTEPH. STUDY TYPE: This is a prospective cohort sub-study. POPULATION: Forty-five patients (64 ± 16 years old) with suspected CTEPH from nine study centers. FIELD STRENGTH/SEQUENCE: 1.5 T and 3 T/2D spoiled gradient echo/bSSFP/T2 HASTE/3D MR angiography (TWIST). ASSESSMENT: Lung signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between study centers with different MRI machines. The contrast between normally and poorly perfused lung areas was examined on PREFUL images. The perfusion defect percentage calculated using PREFUL-MRI (QDPPREFUL ) was compared to QDP from the established dynamic contrast-enhanced MRI technique (QDPDCE ). Furthermore, QDPPREFUL was compared between a patient subgroup with confirmed CTEPH or chronic thromboembolic disease (CTED) to other clinical subgroups. STATISTICAL TESTS: t-Test, one-way analysis of variance (ANOVA), Pearson's correlation. Significance level was 5%. RESULTS: Significant differences in lung SNR and CNR were present between study centers. However, PREFUL perfusion images showed a significant contrast between normally and poorly perfused lung areas (mean delta of normalized perfusion -4.2% SD 3.3) with no differences between study sites (ANOVA: P = 0.065). QDPPREFUL was significantly correlated with QDPDCE (r = 0.66), and was significantly higher in 18 patients with confirmed CTEPH or CTED (57.9 ± 12.2%) compared to subgroups with other causes of PH or with excluded PH (in total 27 patients with mean ± SD QDPPREFUL = 33.9 ± 17.2%). DATA CONCLUSION: PREFUL-MRI could be considered as a non-invasive method for imaging regional lung perfusion in multicenter studies. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 1.

4.
Magn Reson Med ; 88(2): 860-870, 2022 08.
Article in English | MEDLINE | ID: mdl-35348250

ABSTRACT

PURPOSE: To examine the time-dependent diffusion of fluorinated (19 F) gas in human lungs for determination of surface-to-volume ratio in comparison to results from hyperpolarized 129 Xe and lung function testing in healthy volunteers and patients with chronic obstructive pulmonary disease. METHODS: Diffusion of fluorinated gas in the short-time regime was measured using multiple gradient-echo sequences with a single pair of trapezoidal gradient pulses. Pulmonary surface-to-volume ratio was calculated using a first-order approximation of the time-dependent diffusion in a study with 20 healthy volunteers and 22 patients with chronic obstructive pulmonary disease. The repeatability after 7 days as well as the correlation with hyperpolarized 129 Xe diffusion MRI and lung function testing was analyzed. RESULTS: Using 19 F diffusion MRI, the median surface-to-volume ratio is significantly decreased in chronic obstructive pulmonary disease patients (S/V = 126 cm-1 [87-144 cm-1 ]) compared with healthy volunteers (S/V = 164 cm-1 [160-84 cm-1 ], p < 0.0001). No significant difference was found between measurements within 7 days for healthy (p = 0.88, median coefficient of variation = 4.3%) and diseased subjects (p = 0.58, median coefficient of variation= 6.7%). Linear correlations were found with S/V from 129 Xe diffusion MRI (r = 0.85, p = 0.001) and the forced expiratory volume in 1 second (r = 0.68, p < 0.0001). CONCLUSION: Examination of lung microstructure using time-dependent diffusion measurement of inhaled 19 F is feasible, repeatable, and correlates with established measurements.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Xenon Isotopes , Diffusion Magnetic Resonance Imaging/methods , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Respiratory Function Tests
5.
Rofo ; 194(3): 272-280, 2022 03.
Article in English, German | MEDLINE | ID: mdl-34794186

ABSTRACT

PURPOSE: Comparison of puncture deviation and puncture duration between computed tomography (CT)- and C-arm CT (CACT)-guided puncture performed by residents in training (RiT). METHODS: In a cohort of 25 RiTs enrolled in a research training program either CT- or CACT-guided puncture was performed on a phantom. Prior to the experiments, the RiT's level of training, experience playing a musical instrument, video games, and ball sports, and self-assessed manual skills and spatial skills were recorded. Each RiT performed two punctures. The first puncture was performed with a transaxial or single angulated needle path and the second with a single or double angulated needle path. Puncture deviation and puncture duration were compared between the procedures and were correlated with the self-assessments. RESULTS: RiTs in both the CT guidance and CACT guidance groups did not differ with respect to radiologic experience (p = 1), angiographic experience (p = 0.415), and number of ultrasound-guided puncture procedures (p = 0.483), CT-guided puncture procedures (p = 0.934), and CACT-guided puncture procedures (p = 0.466). The puncture duration was significantly longer with CT guidance (without navigation tool) than with CACT guidance with navigation software (p < 0.001). There was no significant difference in the puncture duration between the first and second puncture using CT guidance (p = 0.719). However, in the case of CACT, the second puncture was significantly faster (p = 0.006). Puncture deviations were not different between CT-guided and CACT-guided puncture (p = 0.337) and between the first and second puncture of CT-guided and CACT-guided puncture (CT: p = 0.130; CACT: p = 0.391). The self-assessment of manual skills did not correlate with puncture deviation (p = 0.059) and puncture duration (p = 0.158). The self-assessed spatial skills correlated positively with puncture deviation (p = 0.011) but not with puncture duration (p = 0.541). CONCLUSION: The RiTs achieved a puncture deviation that was clinically adequate with respect to their level of training and did not differ between CT-guided and CACT-guided puncture. The puncture duration was shorter when using CACT. CACT guidance with navigation software support has a potentially steeper learning curve. Spatial skills might accelerate the learning of image-guided puncture. KEY POINTS: · The CT-guided and CACT-guided puncture experience of the RiTs selected as part of the program "Researchers for the Future" of the German Roentgen Society was adequate with respect to the level of training.. · Despite the lower collective experience of the RiTs with CACT-guided puncture with navigation software assistance, the learning curve regarding CACT-guided puncture may be faster compared to the CT-guided puncture technique.. · If the needle path is complex, CACT guidance with navigation software assistance might have an advantage over CT guidance.. CITATION FORMAT: · Meine TC, Hinrichs JB, Werncke T et al. Phantom study for comparison between computed tomography- and C-Arm computed tomography-guided puncture applied by residents in radiology. Fortschr Röntgenstr 2022; 194: 272 - 280.


Subject(s)
Radiology , Tomography, X-Ray Computed , Humans , Phantoms, Imaging , Punctures/methods , Software , Tomography, X-Ray Computed/methods
6.
PLoS One ; 16(6): e0251740, 2021.
Article in English | MEDLINE | ID: mdl-34138864

ABSTRACT

OBJECTIVES: To evaluate the agreement in detecting pulmonary perfusion defects in patients with chronic thromboembolic pulmonary hypertension using dual-energy CT and dynamic contrast-enhanced MRI. Second, to compare both imaging modalities in monitoring lung perfusion changes in these patients after undergoing pulmonary endarterectomy. METHODS: 20 patients were examined with CT and MRI before and/or after pulmonary endarterectomy. Estimated perfusion defect percentage from both modalities was compared in a lobe-based analysis. Spatial agreement of perfusion defect maps was also assessed. RESULTS: A significant correlation between CT and MRI based perfusion defect percentage was calculated in all lung lobes (r > 0.78; p < 0.001). In addition, a good spatial agreement between perfusion defect maps was found (mean spatial overlap for the whole lung was 68.2%; SD = 6.9). Both CT and MRI detected improvements in pulmonary perfusion after pulmonary endarterectomy: 8% and 7% decrease in whole lung perfusion defect percentage (p = 0.007 and 0.004), respectively. In a lobe-wise analysis, improvements were statistically significant only in lower lobes using both modalities (reduction in defect percentage ranged from 16-29%; p < 0.02). CONCLUSIONS: Dual-energy CT is an alternative to MRI in monitoring chronic thromboembolic pulmonary hypertension. Both imaging modalities provided comparable estimations of perfusion defects and could detect similar improvement in lung perfusion after pulmonary endarterectomy.


Subject(s)
Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/physiopathology , Magnetic Resonance Imaging , Perfusion Imaging , Pulmonary Embolism/complications , Tomography, X-Ray Computed , Adult , Female , Humans , Hypertension, Pulmonary/complications , Male , Middle Aged
7.
J Magn Reson Imaging ; 54(2): 618-629, 2021 08.
Article in English | MEDLINE | ID: mdl-33565215

ABSTRACT

BACKGROUND: A previous study has demonstrated the feasibility of 3D phase-resolved functional lung (PREFUL) MRI in healthy volunteers and patients with chronic pulmonary disease. Before clinical use, the repeatability of the ventilation parameters derived from 3D PREFUL MRI must be determined. PURPOSE: To evaluate repeatability of 3D PREFUL and to compare with pulmonary functional lung testing (PFT). STUDY TYPE: Prospective. POPULATION: Fifty-three healthy subjects and 13 patients with chronic obstructive pulmonary disease (COPD). FIELD STRENGTH/SEQUENCE: A prototype 3D stack-of-stars spoiled-gradient-echo sequence at 1.5 T. ASSESSMENT: Study participants underwent repeated MRI examination (median time interval between scans COPD/healthy subjects [interquartile range]: 7/0 days [6-8/0-0 days]) and one PFT carried out at the time of the baseline MRI. For 3D PREFUL, regional ventilation (RVent) and flow-volume loops were computed and rated by cross-correlation (CC). Also, ventilation time-to-peak (VTTP) was computed. Ventilation defect percentage (VDP) maps were obtained for RVent and CC. STATISTICAL TESTS: Repeatability of 3D PREFUL parameters was evaluated using Bland-Altman analysis, coefficient of variation (COV) and intraclass correlation coefficient (ICC). The relation between 3D PREFUL and PFT measures (forced expiratory volume in 1 second (FEV1 ) and forced vital capacity (FVC) was assessed using the Pearson correlation coefficient (r). RESULTS: In healthy subjects and COPD patients, no significant bias (all P range: 0.09-0.77) and a moderate to good repeatability of RVent, VTTP, and VDPRVent were found (COV range: 0.1%-18.2%, ICC range: 0.51-0.88). For CC and VDPCC moderate repeatability was found (COV range: 0.6%-43.6%, ICC: 0.38-0.60). CC, VDPRVent , and VDPCC showed a good correlation with FEV1 (all |r| > 0.58, all P < 0.05) and FEV1 /FVC ratio (all |r| > 0.62, all P < 0.05). DATA CONCLUSION: 3D PREFUL provided a good repeatability of RVent, VTTP, and VDPRVent and moderate repeatability of CC and VDPCC in healthy volunteers and COPD patients, and correlated well with FEV1 and FEV1 /FVC. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Healthy Volunteers , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Retrospective Studies
8.
Pain ; 162(5): 1352-1363, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33230008

ABSTRACT

ABSTRACT: Pain catastrophizing is prominent in chronic pain conditions such as fibromyalgia and has been proposed to contribute to the development of pain widespreadness. However, the brain mechanisms responsible for this association are unknown. We hypothesized that increased resting salience network (SLN) connectivity to nodes of the default mode network (DMN), representing previously reported pain-linked cross-network enmeshment, would be associated with increased pain catastrophizing and widespreadness across body sites. We applied functional magnetic resonance imaging (fMRI) and digital pain drawings (free-hand drawing over a body outline, analyzed using conventional software for multivoxel fMRI analysis) to investigate precisely quantified measures of pain widespreadness and the associations between pain catastrophizing (Pain Catastrophizing Scale), resting brain network connectivity (Dual-regression Independent Component Analysis, 6-minute multiband accelerated fMRI), and pain widespreadness in fibromyalgia patients (N = 79). Fibromyalgia patients reported pain in multiple body areas (most frequently the spinal region, from the lower back to the neck), with moderately high pain widespreadness (mean ± SD: 26.1 ± 24.1% of total body area), and high pain catastrophizing scale scores (27.0 ± 21.9, scale range: 0-52), which were positively correlated (r = 0.26, P = 0.02). A whole-brain regression analysis focused on SLN connectivity indicated that pain widespreadness was also positively associated with SLN connectivity to the posterior cingulate cortex, a key node of the DMN. Moreover, we found that SLN-posterior cingulate cortex connectivity statistically mediated the association between pain catastrophizing and pain widespreadness (P = 0.01). In conclusion, we identified a putative brain mechanism underpinning the association between greater pain catastrophizing and a larger spatial extent of body pain in fibromyalgia, implicating a role for brain SLN-DMN cross-network enmeshment in mediating this association.


Subject(s)
Fibromyalgia , Brain/diagnostic imaging , Brain Mapping , Catastrophization/diagnostic imaging , Fibromyalgia/complications , Fibromyalgia/diagnostic imaging , Humans , Magnetic Resonance Imaging
9.
J Magn Reson Imaging ; 53(4): 1092-1105, 2021 04.
Article in English | MEDLINE | ID: mdl-33247456

ABSTRACT

BACKGROUND: Regional flow volume loop ventilation-weighted noncontrast-enhanced proton lung MRI in free breathing has emerged as a novel technique for assessment of regional lung ventilation, but has yet not been validated with 129 Xenon MRI (129 Xe-MRI), a direct visualization of ventilation in healthy volunteers, cystic fibrosis (CF), and chronic obstructive pulmonary disease (COPD) patients. PURPOSE: To compare regional ventilation and regional flow volume loops measured by noncontrast-enhanced ventilation-weighted phase-resolved functional lung MRI (PREFUL-MRI) with 129 Xe-MRI ventilation imaging and with lung function test parameters. STUDY TYPE: Retrospective study. POPULATION: Twenty patients with COPD, eight patients with CF, and six healthy volunteers. FIELD STRENGTH/SEQUENCE: PREFUL and 129 Xe-MRI gradient echo sequences were acquired at 1.5T. ASSESSMENT: Coronal slices of PREFUL-MRI (free breathing) and 129 Xe-MRI (single breath-hold) were acquired on the same day, matched by their ventrodorsal position and coregistered for evaluation. Ventilation defect percentage (VDP) was calculated based on regional ventilation (RV), regional flow volume loops (RFVL), or 129 Xe-MRI with two different threshold methods. A combined VDP was calculated for RV and RFVL. Additionally, lung function testing was performed (such as the forced expiratory volume in 1 second [FEV1 ]) was used. STATISTICAL TESTS: The obtained parameters were compared using Wilcoxon tests, correlated using Spearman's correlation coefficient (r), and agreement between PREFUL and 129 Xe-MRI parameters was assessed using Bland-Altman analysis and Dice coefficients. RESULTS: VDP measured by PREFUL and 129 Xe were significantly correlated with both thresholding techniques (r = 0.62-0.69, P < 0.05 for all) and with lung function test parameters. Combined RV and RFVL PREFUL defect maps correlated with lung function testing (eg, with FEV1 r = -0.87 P < 0.05), and showed better regional agreement to 129 Xe-MRI ventilation defects (Dice coefficient defect 0.413) with significantly higher VDP values (10.2 ± 27.3, P = 0.04) than either PREFUL defect map alone. DATA CONCLUSION: Combined RV and RFVL PREFUL defect maps likely increase sensitivity to mild airway obstruction with increased VDP values compared to 129 Xe-MRI, and correlate strongly with lung function test parameters. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.


Subject(s)
Lung , Xenon , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Respiratory Function Tests , Retrospective Studies , Xenon Isotopes
10.
Magn Reson Med ; 84(4): 2133-2146, 2020 10.
Article in English | MEDLINE | ID: mdl-32227527

ABSTRACT

PURPOSE: To investigate the diffusion of hyperpolarized 129 Xe in air spaces at short-time scales for determination of lung surface-to-gas-volume ratio in comparison to results from chemical shift saturation recovery, CT, and established clinical measures. METHODS: A pulse sequence for measurement of time-dependent diffusion of 129 Xe in air spaces at short diffusion times was developed. Gas uptake into lung tissue was measured in the same breathhold using chemical shift saturation recovery spectroscopy in the short-time regime. The potential to obtain the surface-to-gas-volume ratio using a first-order and second-order approximation of the short-time expansion of time-dependent diffusion according to Mitra et al11 and its diagnostic relevance were tested in a study with 9 chronic obstructive pulmonary diseases patients. RESULTS: Surface-to-gas-volume ratios obtained from time-dependent diffusion were correlated with results from chemical shift saturation recovery, r = 0.840, P = .005 (first-order fits), and r = 0.923, P < .001 (second-order fits), and from CT results for second-order fits, r = 0.729, P = .026. Group means ± SD were 75.0 ± 15.5 cm-1 (first-order fits) and 122.3 ± 32.8 cm-1 (second-order fits) for time-dependent diffusion, 125.9 ± 43.3 cm-1 for chemical shift saturation recovery, and 159.5 ± 50.9 cm-1 for CT. Surface-to-gas-volume ratios from time-dependent diffusion with first-order fits correlated significantly with carbon monoxide diffusing capacity as percent of prediction, r = 0.724, P = .028. CONCLUSION: Time-dependent diffusion measurements of 129 Xe at short-time scales down to ~1 ms are feasible in chronic obstructive pulmonary patients and provide clinically relevant information on lung microstructure.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Xenon Isotopes , Feasibility Studies , Humans , Lung/diagnostic imaging , Magnetic Resonance Imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Respiratory Function Tests
11.
J Magn Reson Imaging ; 50(6): 1873-1882, 2019 12.
Article in English | MEDLINE | ID: mdl-31134705

ABSTRACT

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is a major cause for the low long-term survival rates after lung transplantation (LTx). Early detection of CLAD may enable providing medical treatment before a nonreversible graft dysfunction has occurred. MRI is advantageous to pulmonary function testing (PFT) in the ability to assess regional function changes, and thus have the potential in detecting very early stages of CLAD before changes in global forced expiratory volume during the first second (FEV1%) occur. PURPOSE: To examine whether early stages of CLAD (diagnosed based on PFT values) could also be detected using MRI-derived parameters of regional flow-volume dynamics. STUDY TYPE: Retrospective. POPULATION: 62 lung transplantation recipients were included in the study, 29 of which had been diagnosed with CLAD at various stages. FIELD STRENGTH/SEQUENCE: MRI datasets were acquired with a 1.5T Siemens scanner using a spoiled gradient echo sequence. ASSESSMENT: MRI datasets were retrospectively preprocessed and analyzed by a blinded radiologist according to the phase resolved functional lung MRI (PREFUL-MRI) approach, resulting in fractional ventilation (FV) maps and regional flow-volume loops (rFVL). FV- and rFVL-based parameters of regional lung ventilation were estimated. STATISTICAL TESTS: Differences between groups were compared by Mann-Whitney U-test with a Bonferroni correction for multiple comparisons (n = 2). RESULTS: rFVL-CC-based parameters discriminated significantly between the presence or absence of CLAD (P < 0.003). DATA CONCLUSION: Using the contrast media-free PREFUL-MRI technique, parameters of ventilation dynamics and its regional heterogeneity were shown to be sensitive for the detection of early CLAD stages. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 3 J. Magn. Reson. Imaging 2019;50:1873-1882.


Subject(s)
Allografts/diagnostic imaging , Allografts/physiopathology , Lung Transplantation , Magnetic Resonance Imaging/methods , Primary Graft Dysfunction/diagnostic imaging , Primary Graft Dysfunction/physiopathology , Chronic Disease , Cohort Studies , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung/surgery , Male , Middle Aged , Respiratory Function Tests , Retrospective Studies
12.
Hum Brain Mapp ; 37(10): 3544-56, 2016 10.
Article in English | MEDLINE | ID: mdl-27168407

ABSTRACT

Independent component analysis (ICA) is a widely used technique for investigating functional connectivity (fc) in functional magnetic resonance imaging data. Masked independent component analysis (mICA), that is, ICA restricted to a defined region of interest, has been shown to detect local fc networks in particular brain regions, including the cerebellum, brainstem, posterior cingulate cortex, operculo-insular cortex, hippocampus, and spinal cord. Here, we present the mICA toolbox, an open-source GUI toolbox based on FSL command line tools that performs mICA and related analyses in an integrated way. Functions include automated mask generation from atlases, essential preprocessing, mICA-based parcellation, back-reconstruction of whole-brain fc networks from local ones, and reproducibility analysis. Automated slice-wise calculation and cropping are additional functions that reduce computational time and memory requirements for large analyses. To validate our toolbox, we tested these different functions on the cerebellum, hippocampus, and brainstem, using resting-state and task-based data from the Human Connectome Project. In the cerebellum, mICA detected six local networks together with their whole-brain counterparts, closely replicating previous results. MICA-based parcellation of the hippocampus showed a longitudinally discrete configuration with greater heterogeneity in the anterior hippocampus, consistent with animal and human literature. Finally, brainstem mICA detected motor and sensory nuclei involved in the motor task of tongue movement, thereby replicating and extending earlier results. Hum Brain Mapp 37:3544-3556, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging , User-Computer Interface , Adult , Atlases as Topic , Connectome/methods , Female , Humans , Male , Motor Activity/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Reproducibility of Results , Rest , Tongue/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...