Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38148431

ABSTRACT

In recent years, evidence has accumulated towards a distractor suppression mechanism that enables efficient selection of targets in a visual search task. According to these findings, the search for a target is faster in the presence of a salient distractor in a display among homogenous distractors as opposed to its absence. Studies have also shown that distractor suppression not only operates on the feature level but can also be spatially guided. The motivation of the current study was to examine if spatially guided distractor suppression can be goal-driven. We tested this across four experiments. In Experiment 1A, the task was to search for a shape target (e.g., a circle) and discriminate the orientation of the line within it. In some trials, a salient color distractor was presented in the display while participants were told that it appeared in one of the two locations on the horizontal axis (or the vertical axis, counterbalanced across participants). We expected enhanced distractor suppression when the salient distractor appeared within this "spatial filter" but did not find it since the target was also presented at the filtered locations. Experiment 1B replicated Experiment 1A, except that the target was always presented outside the filter; filtering enhanced search performance. In Experiment 2 even when the filter contained the salient distractor in only 65% of the filtered trials, filtering benefited search performance. In Experiment 3, the filter changed on every trial and did not benefit suppression.

2.
Mem Cognit ; 50(2): 261-277, 2022 02.
Article in English | MEDLINE | ID: mdl-34480326

ABSTRACT

Previous studies showed that (a) performing pointing movements towards to-be-remembered locations enhanced their later recognition, and (b) in a joint-action condition, experimenter-performed pointing movements benefited memory to the same extent as self-performed movements. The present study replicated these findings and additionally recorded participants' fixations towards studied arrays. Each trial involved the presentation of two consecutive spatial arrays, where each item occupied a different spatial location. The item locations of one array were encoded by mere visual observation (the no-move array), whereas the locations of the other array were encoded by observation plus pointing movements (the move array). Critically, in Experiment 1, participants took turns with the experimenter in pointing towards the move arrays (joint-action condition), while in Experiment 2 pointing was performed only by the experimenter (passive condition). The results showed that the locations of move arrays were recognized better than the locations of no-move arrays in Experiment 1, but not in Experiment 2. The pattern of eye-fixations was in line with behavioral findings, indicating that in Experiment 1, fixations to the locations of move arrays were higher in number and longer in duration than fixations to the locations of no-move arrays, irrespective of the agent who performed the movements. In contrast, no differences emerged in Experiment 2. We propose that, in the joint-action condition, self- and other-performed pointing movements are coded at the same representational level and their functional equivalency is reflected in a similar pattern of eye-fixations.


Subject(s)
Eye Movements , Memory, Short-Term , Fixation, Ocular , Humans , Mental Recall , Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...