Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-37950137

ABSTRACT

Fish as seafood is a bioindicator for chemical substances like trace metals in the water systems that accumulate in fish bodies. Fe and Zn as essential and Pb, Ni, and Cd as heavy metals were quantitatively analyzed in fish muscle samples by an atomic absorption spectrophotometer (Perkin Elmer, Model AAnalyst-700). Fe and Zn's results agreed with the food quality guidelines. Fe was the highest in the range of 2.6-9.4 in mg kg-1. The Zn content indicates the contribution of anthropogenic agents through the food chain. Ni > Pb > Cd was found in marine fish species and Pb > Ni > Cd in freshwater fish. The results have been explored for source appraisal of bioaccumulated trace metals and categorized selected marine and freshwater species based on characteristics (like life cycle and habitats) by applying multivariate principal component analysis to risk assessment parameters. The Pearson correlation coefficients were applied to the risk assessment parameters for interdependencies of metals. Interestingly, synchronized outcomes were obtained with trace metal data. The study results were interpreted in the context of the fish type, habitat, surroundings, feed, life cycle, etc. The living habitats strongly affect trace metal accumulation, target hazard quotient (THQ), and target cancer risk (TR) attributes. The fishermen's community was at higher risk for carcinogenic effects than other seafood consumers. Overall, determinations for fish species were under safe limits as described by international regulatory bodies (FAO, WHO, ANHMRC, WAA).

2.
Environ Sci Pollut Res Int ; 30(29): 73964-73973, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37202632

ABSTRACT

Globally, the hazardous substance in children's goods is of great concern. Toxic chemicals are potentially harmful to the health and growth of infants and children. Lead (Pb) and cadmium (Cd)-contaminated children's jewelry is widely encountered in many countries. This study aims to determine the concentration of metal toxicants (Pb, Cd, Ni, Cu, Zn, Co, and Fe) in event-based (Independence Day festival) children's jewelry, considering time-limited and fast production products that may compromise the quality and safety parameters during manufacturing. The determinations are for the time-constraint industrial production of children's jewelry in the context of the toxic substances in a variety of base materials used. This is the first time event-based children's jewelry has been monitored and critically assessed for metal contamination. Forty-two samples, including metallic, wooden, textile, rubber, plastic, and paint-coated plastic children's jewelry, were tested. Seventy-four percent of samples detected Pb and Cd in quantifiable amounts. Ni in 71%, Cu in 67%, Co in 43%, and Zn and Fe were detected in 100% samples with quantifiable amounts. Twenty-two ID-CJ samples exceeded the US regulatory limit for Pb and four samples for Cd. However, twenty-nine samples for Pb, eleven for Cd, five for Co, and one for Cu exceeded the EU regulatory limit. The highest concentration of Pb was found in paint-coated plastic jewelry, and the highest Cd was found in metallic jewelry. These results suggest that the potential hazards of event-based children's jewelry deserve the attention of government agencies seeking to limit children's exposure to toxic chemicals. Intergovernmental organizations and individual countries regulate chemicals in consumer products, but a coordinated international approach is lacking. Some continents and countries still lack in regulations for children's products, especially jewelry, and toys.


Subject(s)
Jewelry , Metals, Heavy , Infant , Child , Humans , Cadmium , Lead , Hazardous Substances , Plastics , Metals, Heavy/analysis , Risk Assessment , Environmental Monitoring
3.
J Sci Food Agric ; 103(7): 3261-3271, 2023 May.
Article in English | MEDLINE | ID: mdl-36799259

ABSTRACT

BACKGROUND: Low-protein wheat flour can produce bread with poor texture and appearance, reducing its nutritional value and market appeal. This is a growing concern for both the food industry and consumers relying on wheat as a dietary staple. The present study evaluated the individual and combined effects of bacterial xylanase (BX), maltogenic α-amylase (MG), vital gluten (VG) and ascorbic acid (AA) with respect to improving weak flour properties for bread making. RESULTS: BX, VG and AA improved gluten Index (GI), whereas MG was employed for optimizing amylolytic-activity in flour. VG increased the water absorption (WA) capacity of flour and prolonged dough development time (DDT). The dough stability (DST) was increased by BX and VG. BX and MG decreased crumb firmness (CF) and showed anti-staling effect. All additives reduced bake loss, increased loaf volume (LV) and retained or improved sensory attributes of bread. However, MG at 60 mg kg-1 (MG60), BX at 30 mg kg-1 (BX30), VG at 5% (VG5) and AA at 50 mg kg-1 (AA50) were found to be the most suitable for evaluating in combinations. Ternary combinations of MG60, BX30, VG5 or AA50 imparted significantly (P < 0.05) positive impacts on GI, WA, DDT, DST, CF, LV and sensory attributes compared to control, individual and binary combinations. CONCLUSION: The PCA suggested that a combination of MG60 + VG5 was more similar to MG60 + BX30 + VG5, whereas, MG60 + BX30 and MG60 + AA50 were more related to MG60 + BX30 + AA50 combination, but all of these combinations showed the improvement in the characteristics compared to control flour. © 2023 Society of Chemical Industry.


Subject(s)
Bread , Flour , Bread/analysis , Flour/analysis , Glutens/chemistry , Triticum/chemistry
4.
Heliyon ; 8(1): e08809, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35111986

ABSTRACT

The vehicular industry is looking for continuous challenges to develop the sustainability of its manufacturing, maintenance processes, and vehicle emissions due to marketability, environmental, economic, and policy concerns. The present study focuses on the impact of these processes on the environment. In Pakistan, most of the auto-body refinishing processes are carried out in an open atmosphere. The shades of Azadirachta indica (Neem Tree) are generally used for the outdoor practice of scrapping, grinding, and painting in auto-body refinishing shops of Pakistan. Azadirachta indica leaves were selected as bio-indicator. For the present work, 26 affected sites and 10 control sites were selected from Karachi city, which is the financial hub and biggest city of Pakistan. Concentrations of different metals (Fe, Co, Cd, Cr, Cu, Mn, Mo, Ni, Pb, and Zn) were determined by atomic absorption spectrophotometer. A geographic information system (GIS) is used to present the variation in concentrations within Karachi city. The only positive correlation was observed in Pb and Mn (0.750). Principal component analysis (PCA) is applied to identify the anthropogenic effect between auto-body refinishing areas and control areas. Almost all analyzed metals show higher concentration at affected sites but Pb (87.14 mg/kg), Mn (46.47 mg/kg) and Fe (146.95 mg/kg) were leading the values, as compared to their concentration at control sites, Pb (48.83 mg/kg), Mn (15.23 mg/kg) and Fe (43.07 mg/kg). All analyzed metals are frequently present in different color pigments, whereas Pb, Mn, and Fe may also come from other sources, like the anti-knocking agent, vehicular exhaust, and scraping of car surface.

5.
Hum Mol Genet ; 28(22): 3704-3723, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31304552

ABSTRACT

The craniofacial disorder mandibulofacial dysostosis Guion-Almeida type is caused by haploinsufficiency of the U5 snRNP gene EFTUD2/SNU114. However, it is unclear how reduced expression of this core pre-mRNA splicing factor leads to craniofacial defects. Here we use a CRISPR-Cas9 nickase strategy to generate a human EFTUD2-knockdown cell line and show that reduced expression of EFTUD2 leads to diminished proliferative ability of these cells, increased sensitivity to endoplasmic reticulum (ER) stress and the mis-expression of several genes involved in the ER stress response. RNA-Seq analysis of the EFTUD2-knockdown cell line revealed transcriptome-wide changes in gene expression, with an enrichment for genes associated with processes involved in craniofacial development. Additionally, our RNA-Seq data identified widespread mis-splicing in EFTUD2-knockdown cells. Analysis of the functional and physical characteristics of mis-spliced pre-mRNAs highlighted conserved properties, including length and splice site strengths, of retained introns and skipped exons in our disease model. We also identified enriched processes associated with the affected genes, including cell death, cell and organ morphology and embryonic development. Together, these data support a model in which EFTUD2 haploinsufficiency leads to the mis-splicing of a distinct subset of pre-mRNAs with a widespread effect on gene expression, including altering the expression of ER stress response genes and genes involved in the development of the craniofacial region. The increased burden of unfolded proteins in the ER resulting from mis-splicing would exceed the capacity of the defective ER stress response, inducing apoptosis in cranial neural crest cells that would result in craniofacial abnormalities during development.


Subject(s)
Mandibulofacial Dysostosis/genetics , Peptide Elongation Factors/genetics , Ribonucleoprotein, U5 Small Nuclear/genetics , CRISPR-Cas Systems , Cell Proliferation/genetics , Craniofacial Abnormalities/genetics , Endoplasmic Reticulum Stress/genetics , Exons , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , HEK293 Cells , Haploinsufficiency/genetics , Humans , Introns , Mutation , Peptide Elongation Factors/metabolism , Phenotype , RNA Precursors/metabolism , RNA Splicing/genetics , Ribonucleoprotein, U5 Small Nuclear/metabolism , Sequence Analysis, RNA/methods , Spliceosomes/genetics
6.
Methods Mol Biol ; 1797: 147-163, 2018.
Article in English | MEDLINE | ID: mdl-29896690

ABSTRACT

Heart is the first mesodermal organ to develop and is sensitive to life-threatening toxic effects of drugs during development. A number of methods have been devised to study developmental cardiotoxic effects of drugs including micromass system. The micromass system involves the culture of primary embryonic cells and reestablishment of tissue system in vitro. In chick embryonic cardiomyocyte micromass system the chick heart cells are cultured in a small volume at a very high cell density. These cells form synchronized contracting foci. Addition of drugs to this system allows us to study the developmental cardiotoxic effects at molecular level. Using appropriate end points and molecular marker or adopting high-throughput screening, this method can further help to identify and avoid the use of cardiotoxic compounds during development.


Subject(s)
Cardiotoxicity , Cell Differentiation , Embryonic Stem Cells/pathology , Heart/embryology , Myocytes, Cardiac/pathology , Toxicity Tests/methods , Animals , Cells, Cultured , Chick Embryo , Chickens , Embryonic Stem Cells/drug effects , Heart/drug effects , Myocytes, Cardiac/drug effects
7.
RSC Adv ; 8(15): 8319-8328, 2018 Feb 19.
Article in English | MEDLINE | ID: mdl-35541991

ABSTRACT

The organic solar cell (OSC) is a current hot topic in the context of energy related issues in order to capture energy in an economic and environmentally friendly manner from the most abundant natural source, the sun. However, the efficiency of OSCs achieved so far is not up to the mark. Major components of OSCs are the electron acceptor material, such as fullerene, and the electron donor material, such as poly(3-hexylthiophene), P3HT. Fullerene is an ideal acceptor material but molecular level engineering of P3HT is required to enhance the efficiency of OSCs. Optoelectronic properties of P3HT can be improved by controlling the regioregularity, energy band gap, and molar mass of the polymer. Additionally, p-doping of the semiconducting polymer can also help in broadening the optical spectrum of P3HT. In this study, we propose methods for the improvement of the above-mentioned properties during the synthesis of P3HT. The main focus was the improvement of the regioregularity of the synthesized P3HT, which was achieved by polymerization of 3-hexylthiophene under an electric field for the first time. The effect of molar mass and p-doping on the band gap is evaluated systematically and theoretical predictions are confirmed by experimental results.

8.
Int J Mol Sci ; 15(1): 1647-70, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24451143

ABSTRACT

Hair follicle morphogenesis depends on Wnt, Shh, Notch, BMP and other signaling pathways interplay between epithelial and mesenchymal cells. The Wnt pathway plays an essential role during hair follicle induction, Shh is involved in morphogenesis and late stage differentiation, Notch signaling determines stem cell fate while BMP is involved in cellular differentiation. The Wnt pathway is considered to be the master regulator during hair follicle morphogenesis. Wnt signaling proceeds through EDA/EDAR/NF-κB signaling. NF-κB regulates the Wnt pathway and acts as a signal mediator by upregulating the expression of Shh ligand. Signal crosstalk between epithelial and mesenchymal cells takes place mainly through primary cilia. Primary cilia formation is initiated with epithelial laminin-511 interaction with dermal ß-1 integrin, which also upregulates expression of downstream effectors of Shh pathway in dermal lineage. PDGF signal transduction essential for crosstalk is mediated through epithelial PDGF-A and PDGFRα expressed on the primary cilia. Dermal Shh and PDGF signaling up-regulates dermal noggin expression; noggin is a potent inhibitor of BMP signaling which helps in counteracting BMP mediated ß-catenin inhibition. This interplay of signaling between the epithelial and dermal lineage helps in epithelial Shh signal amplification. The dermal Wnt pathway helps in upregulation of epithelial Notch expression. Dysregulation of these pathways leads to certain abnormalities and in some cases even tumor outgrowth.


Subject(s)
Hair Follicle/growth & development , Morphogenesis , Signal Transduction , Animals , Hair Diseases/genetics , Hair Diseases/metabolism , Hair Follicle/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...