Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Plant Mol Biol ; 107(1-2): 49-62, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34417937

ABSTRACT

KEY MESSAGE: Two MYB genes have been identified which regulate apocarotenoid metabolism in Crocus sativus. Apocarotenoids like crocin, picrocrocin and safranal are restricted to genus Crocus and are synthesized by oxidative cleavage of zeaxanthin followed by glycosylation reactions. In Crocus sativus, these apocarotenoids are synthesized in stigma part of the flower in developmentally regulated manner. Most of the genes of apocarotenoid pathway are known, however, the mechanism that regulates its tissue and stage specific biosynthesis remains elusive. MYB family was identified as the largest transcription factor family from Crocus transciptome which indicated its possible role in apocarotenoid regulation besides regulating other metabolic pathways. Towards this, we started with identification of 150 MYB genes from Crocus transcriptome databases. The phylogenetic analysis of Crocus MYB genes divided them into 27 clusters. Domain analysis resulted in identification of four groups of MYBs depending upon the number of R repeats present. Expression profiling indicated that 12 MYBs are upregulated in stigma out of which expression of four genes CstMYB1, CstMYB14, CstMYB16 and CstMYB1R2 correlated with crocin accumulation. Transient overexpression of two nuclear localized MYB genes (CstMYB1 and CstMYB1R2) in Crocus confirmed their role in regulating carotenoid metabolism. Yeast-one-hybrid confirmed that CstMYB1 binds to carotenoid cleavage dioxygenase 2 (CCD2) promoter while CstMYB1R2 binds to phytoene synthase (PSY) and CCD2 promoters. Overall, our study established that CstMYB1 and CstMYB1R2 regulate apocarotenoid biosynthesis by directly binding to promoters of pathway genes.


Subject(s)
Carotenoids/metabolism , Crocus/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins/genetics , Transcription Factors/genetics , Base Sequence , Cell Nucleus/metabolism , Gene Expression Profiling , Phylogeny , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Transcriptome
3.
BMC Genomics ; 16: 698, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26370545

ABSTRACT

BACKGROUND: Crocus sativus stigmas form rich source of apocarotenoids like crocin, picrocrocin and saffranal which besides imparting color, flavour and aroma to saffron spice also have tremendous pharmacological properties. Inspite of their importance, the biosynthetic pathway of Crocus apocarotenoids is not fully elucidated. Moreover, the mechanism of their stigma specific accumulation remains unknown. Therefore, deep transcriptome sequencing of Crocus stigma and rest of the flower tissue was done to identify the genes and transcriptional regulators involved in the biosynthesis of these compounds. RESULTS: Transcriptome of stigma and rest of the flower tissue was sequenced using Illumina Genome Analyzer IIx platform which generated 64,604,402 flower and 51,350,714 stigma reads. Sequences were assembled de novo using trinity resulting in 64,438 transcripts which were classified into 32,204 unigenes comprising of 9853 clusters and 22,351 singletons. A comprehensive functional annotation and gene ontology (GO) analysis was carried out. 58.5 % of the transcripts showed similarity to sequences present in public databases while rest could be specific to Crocus. 5789 transcripts showed similarity to transcription factors representing 76 families out of which Myb family was most abundant. Many genes involved in carotenoid/apocarotenoid pathway were identified for the first time in this study which includes zeta-carotene isomerase and desaturase, carotenoid isomerase and lycopene epsilon-cyclase. GO analysis showed that the predominant classes in biological process category include metabolic process followed by cellular process and primary metabolic process. KEGG mapping analysis indicated that pathways involved in ribosome, carbon and starch and sucrose metabolism were highly represented. Differential expression analysis indicated that key carotenoid/apocarotenoid pathway genes including phytoene synthase, phytoene desaturase and carotenoid cleavage dioxygenase 2 are enriched in stigma thereby providing molecular proof for stigma to be the site of apocarotenoid biosynthesis. CONCLUSIONS: This data would provide a rich source for understanding the carotenoid/apocarotenoid metabolism in Crocus. The database would also help in investigating many questions related to saffron biology including flower development.


Subject(s)
Carotenoids/biosynthesis , Crocus/genetics , Crocus/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Cluster Analysis , Computational Biology/methods , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Phylogeny , Reproducibility of Results , Transcription Factors/genetics
4.
Appl Microbiol Biotechnol ; 99(7): 2955-65, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25750045

ABSTRACT

Endophytism is the phenomenon of mutualistic association of a plant with a microorganism wherein the microbe lives within the tissues of the plant without causing any symptoms of disease. In addition to being a treasured biological resource, endophytes play diverse indispensable functions in nature for plant growth, development, stress tolerance, and adaptation. Our understanding of endophytism and its ecological aspects are overtly limited, and we have only recently started to appreciate its essence. Endophytes may impact plant biology through the production of diverse chemical entities including, but not limited to, plant growth hormones and by modulating the gene expression of defense and other secondary metabolic pathways of the host. Studies have shown differential recruitment of endophytes in endophytic populations of plants growing in the same locations, indicating host specificity and that endophytes evolve in a coordinated fashion with the host plants. Endophytic technology can be employed for the efficient production of agricultural and economically important plants and plant products. The rational application of endophytes to manipulate the microbiota, intimately associated with plants, can help in enhancement of production of agricultural produce, increased production of key metabolites in medicinal and aromatic plants, as well as adaption to new bio-geographic regions through tolerance to various biotic and abiotic conditions. However, the potential of endophytic biology can be judiciously harnessed only when we obtain insight into the molecular mechanism of this unique mutualistic relationship. In this paper, we present a discussion on endophytes, endophytism, their significance, and diverse functions in nature as unraveled by the latest research to understand this universal natural phenomenon.


Subject(s)
Endophytes/physiology , Plants/metabolism , Plants/microbiology , Adaptation, Physiological , Biotechnology/methods , Ecosystem , Endophytes/classification , Endophytes/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...