Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 31(30): 305303, 2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32235061

ABSTRACT

Transparent conductive films are used in a wide variety of devices. While solar cell top electrodes as well as tablet and mobile phone screens require high optical transparency and low sheet resistance (>80% and <10 Ω/□) to maximize power efficiency; other, less demanding applications, such as those in capacitive touch panels and antistatic coatings, in which only small currents are involved, can be managed with coatings of moderate conductivity. In this paper, we show that area-selective argon plasma treated polyethylene terephthalate surfaces are suitable for localized deposition of carbon nanotubes from their aqueous dispersions by a simple dip coating and subsequent drying processes. The as-deposited carbon nanotubes form entangled networks in microscopic patterns over the plasma-treated surface areas with sheet resistance of <1 kΩ/□ and optical transparency of ~75%. Based on this process, we demonstrate grid-type transparent conductive thin films of carbon nanotubes as capacitive touch sensors. Since each process step is robust, easy to up and downscale, and may be implemented even in roll-to-roll and sheet-to-sheet fabrication, the demonstrated technology is promising to produce grid-type structures even at an industrial scale in the future.

2.
J Nanosci Nanotechnol ; 19(1): 459-464, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30327056

ABSTRACT

Catalyst size affects the overall kinetics and mechanism of almost all heterogeneous chemical reactions. Since the functional sensing materials in resistive chemical sensors are practically the very same nanomaterials as the catalysts in heterogeneous chemistry, a plausible question arises: Is there any effect of the catalyst size on the sensor properties? Our study attempts to give an insight into the problem by analyzing the response and sensitivity of resistive H2 sensors based on WO3 nanowire supported Pt nanoparticles having size of 1.5±0.4 nm, 6.2±0.8 nm, 3.7±0.5 nm and 8.3±1.3 nm. The results show that Pt nanoparticles of larger size are more active in H2 sensing than their smaller counterparts and indicate that the detection mechanism is more complex than just considering the number of surface atoms of the catalyst.

3.
Sci Rep ; 8(1): 4708, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29549337

ABSTRACT

The rapid oxide formation on pristine unprotected copper surfaces limits the direct application of Cu nanomaterials in electronics and sensor assemblies with physical contacts. However, it is not clear whether the growing cuprous (Cu2O) and cupric oxides (CuO) and the formation of core-shell-like Cu-Cu2O/CuO nanowires would cause any compromise for non-contact optical measurements, where light absorption and subsequent charge oscillation and separation take place such as those in surface plasmon-assisted and photocatalytic processes, respectively. Therefore, we analyze how the surface potential of hydrothermally synthetized copper nanowires changes as a function of time in ambient conditions using Kelvin probe force microscopy in dark and under light illumination to reveal charge accumulation on the nanowires and on the supporting gold substrate. Further, we perform finite element modeling of the optical absorption to predict plasmonic behavior of the nanostructures. The results suggest that the core-shell-like Cu-Cu2O/CuO nanowires may be useful both in photocatalytic and in surface plasmon-enhanced processes. Here, by exploiting the latter, we show that regardless of the native surface oxide formation, random networks of the nanowires on gold substrates work as excellent amplification media for surface-enhanced Raman spectroscopy as demonstrated in sensing of Rhodamine 6G dye molecules.

4.
Sci Rep ; 6: 25610, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27180902

ABSTRACT

In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature. Bottom gated field effect transistor structures based on random networks of the hybrids show only minor modulation of the channel conductance upon applied gate voltage, which indicates poor electrical transport between the nanowires in the random films. On the other hand, the photo response of channel current holds promise for cost-efficient solution process fabrication of photodetector devices working in the visible spectral range.

5.
Sci Rep ; 5: 13710, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26333520

ABSTRACT

The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.1 and 4.9 Ω/sq, with corresponding optical transmittance of 79% and 65% at 500 nm, respectively. Both films show excellent adhesion and also preserve their structural integrity and good contact with the substrate for severe bending showing less than 4% decrease of conductivity even after 10(5) cycles. Transparent conductive films for capacitive touch screens and pixels of microscopic resistive electrodes are demonstrated.

6.
Sci Rep ; 4: 6933, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25375221

ABSTRACT

In the present work electrically conductive, flexible, lightweight carbon sponge materials derived from open-pore structure melamine foams are studied and explored. Hydrophobic and hydrophilic surface properties - depending on the chosen treatment conditions - allow the separation and storage of liquid chemical compounds. Activation of the carbonaceous structures substantially increases the specific surface area from ~4 m(2)g(-1) to ~345 m(2)g(-1), while retaining the original three-dimensional, open-pore structure suitable for hosting, for example, Ni catalyst nanoparticles. In turn the structure is rendered suitable for hydrogenating acetone to 2-propanol and methyl isobutyl ketone as well for growing hierarchical carbon nanotube structures used as electric double-layer capacitor electrodes with specific capacitance of ~40 F/g. Mechanical stress-strain analysis indicates the materials are super-compressible (>70% volume reduction) and viscoelastic with excellent damping behavior (loss of 0.69 ± 0.07), while piezoresistive measurements show very high gauge factors (from ~20 to 50) over a large range of deformations. The cost-effective, robust and scalable synthesis - in conjunction with their fascinating multifunctional utility - makes the demonstrated carbon foams remarkable competitors with other three-dimensional carbon materials typically based on pyrolyzed biopolymers or on covalently bonded graphene and carbon nanotube frameworks.

7.
J Mater Chem B ; 2(10): 1307-1316, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-32261445

ABSTRACT

Further developments of antibacterial coatings based on photocatalytic nanomaterials could be a promising route towards potential environmentally friendly applications in households, public buildings and health care facilities. Hereby we describe a simple chemical approach to synthesize photocatalytic nanomaterial-embedded coatings using gypsum as a binder. Various types of TiO2 nanofiber-based photocatalytic materials (nitrogen-doped and/or palladium nanoparticle decorated) and their composites with gypsum were characterized by means of scanning (SEM) and transmission (TEM) electron microscopy as well as electron and X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) techniques. These gypsum-based composites can be directly applied as commercially available paints on indoor walls. Herein we report that surfaces coated with photocatalytic composites exhibit excellent antimicrobial properties by killing both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) under blue light. In the case of MSSA cells, the palladium nanoparticle-decorated and nitrogen-doped TiO2 composites demonstrated the highest antimicrobial activity. For the MRSA strain even pure gypsum samples were proven to be efficient in eradicating Gram-positive human pathogens. The cytotoxicity of freestanding TiO2 nanofibers was revealed by analyzing the viability of HeLa cells using MTT and fluorescent cell assays.

8.
Langmuir ; 26(21): 16496-502, 2010 Nov 02.
Article in English | MEDLINE | ID: mdl-20597526

ABSTRACT

Copper nanowires (NWs) with uniform diameters and lengths ranging from several hundreds of nanometers to several micrometers have been prepared with high yield by a simple hydrothermal procedure. The X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis data indicate that the copper nanowires are free of any contamination, while the electron diffraction (ED) analysis has revealed the nanowires to be single crystals. The nanowire growth mechanism has also been discussed. Hexadecylamine is the surface stabilizing agent in our method, while glucose facilitates formation of single-crystalline seeds on which the copper nanowires grow. The electrical properties of the as-synthesized copper NWs have also been investigated.


Subject(s)
Copper/chemistry , Nanowires/chemistry , Temperature , Electricity , Electrodes , Particle Size , Surface Properties
9.
J Nanosci Nanotechnol ; 7(4-5): 1604-10, 2007.
Article in English | MEDLINE | ID: mdl-17450932

ABSTRACT

We prepared buckypapers with surface densities in the 1.13-5.66 mg x cm(-2) range by filtering multi-wall carbon nanotube (MWCNT) suspensions in acetyl-acetone (acac) and dimethylformamide (DMF) through 0.45 microm nylon filters. Filtration curves were evaluated using the Carman equation. The average resistance of the filter itself was found to be Rm = 3.79 x 10(10) m(-1) for acac and 8.49 x 10(10) m(-1) for DMF The specific resistance a of the filter cakes decreased with increasing film surface density from 16.1 x 10(12) m x kg(-1) (for the 1.13 mg x cm(-2) film from DMF) to 4.38 x 10(12) m x kg(-1) (for the 5.66 mg x cm(-2) film from DMF). The effective diffusivity of N2 at 298 K and a pressure difference of 10 mbar was also determined for all membranes and found to fall into the 1.14 x 10(-9)-3.74 x 10(-9) m2 x s(-1) range. Both the porosity and the tortuosity of buckypapers increased with their thickness. An approx. 5 microm thick Teflon (PTFE) coating was applied to the MWCNT membranes by pulsed laser deposition. The gas permeability of the MWCNT-PTFE membranes matches that of the uncoated nanotube films. This observation is an agreement with our SEM and AFM data on porous coating morphology.


Subject(s)
Nanotechnology/methods , Nanotubes, Carbon/chemistry , Polytetrafluoroethylene/chemistry , Acetone/chemistry , Carbon/chemistry , Diffusion , Dimethylformamide/chemistry , Equipment Design , Gases , Materials Testing , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Permeability , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...