Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
mBio ; 10(4)2019 07 02.
Article in English | MEDLINE | ID: mdl-31266865

ABSTRACT

Despite recognition that biogeography and individuality shape the function and composition of the human skin microbiome, we know little about how extrinsic and intrinsic host factors influence its composition. To explore the contributions of these factors to skin microbiome variation, we profiled the bacterial microbiomes of 495 North American subjects (ages, 9 to 78 years) at four skin surfaces plus the oral epithelium using 16S rRNA gene amplicon sequencing. We collected subject metadata, including host physiological parameters, through standardized questionnaires and noninvasive biophysical methods. Using a combination of statistical modeling tools, we found that demographic, lifestyle, and physiological factors collectively explained 12 to 20% of the variability in microbiome composition. The influence of health factors was strongest on the oral microbiome. Associations between host factors and the skin microbiome were generally dominated by operational taxonomic units (OTUs) affiliated with the Clostridiales and Prevotella A subset of the correlations between microbial features and host attributes were site specific. To further explore the relationship between age and the skin microbiome of the forehead, we trained a Random Forest regression model to predict chronological age from microbial features. Age was associated mostly with two mutually coexcluding Corynebacterium OTUs. Furthermore, skin aging variables (wrinkles and hyperpigmented spots) were independently correlated to these taxa.IMPORTANCE Many studies have highlighted the importance of body site and individuality in shaping the composition of the human skin microbiome, but we still have a poor understanding of how extrinsic (e.g., lifestyle) and intrinsic (e.g., age) factors influence its composition. We characterized the bacterial microbiomes of North American volunteers at four skin sites and the mouth. We also collected extensive subject metadata and measured several host physiological parameters. Integration of host and microbial features showed that the skin microbiome was predominantly associated with demographic, lifestyle, and physiological factors. Furthermore, we uncovered reproducible associations between chronological age, skin aging, and members of the genus Corynebacterium Our work provides new understanding of the role of host selection and lifestyle in shaping skin microbiome composition. It also contributes to a more comprehensive appreciation of the factors that drive interindividual skin microbiome variation.


Subject(s)
Bacteria/classification , Health Status , Microbiota , Mouth Mucosa/microbiology , Skin/microbiology , Adolescent , Adult , Aged , Bacteria/genetics , Child , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Humans , Male , Middle Aged , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Young Adult
2.
Mucosal Immunol ; 11(3): 785-795, 2018 05.
Article in English | MEDLINE | ID: mdl-29067994

ABSTRACT

The mammalian gastrointestinal tract harbors a microbial community with metabolic activity critical for host health, including metabolites that can modulate effector functions of immune cells. Mice treated with vancomycin have an altered microbiome and metabolite profile, exhibit exacerbated T helper type 2 cell (Th2) responses, and are more susceptible to allergic lung inflammation. Here we show that dietary supplementation with short-chain fatty acids (SCFAs) ameliorates this enhanced asthma susceptibility by modulating the activity of T cells and dendritic cells (DCs). Dysbiotic mice treated with SCFAs have fewer interleukin-4 (IL4)-producing CD4+ T cells and decreased levels of circulating immunoglobulin E (IgE). In addition, DCs exposed to SCFAs activate T cells less robustly, are less motile in response to CCL19 in vitro, and exhibit a dampened ability to transport inhaled allergens to lung draining nodes. Our data thus demonstrate that gut dysbiosis can exacerbate allergic lung inflammation through both T cell- and DC-dependent mechanisms that are inhibited by SCFAs.


Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Dysbiosis/immunology , Fatty Acids, Volatile/administration & dosage , Hypersensitivity/immunology , Pneumonia/immunology , Th2 Cells/immunology , Allergens/immunology , Animals , Antigen Presentation , Asthma/prevention & control , Chemokine CCL19/metabolism , Dietary Supplements , Dysbiosis/prevention & control , Gastrointestinal Microbiome/immunology , Hypersensitivity/prevention & control , Interleukin-4/genetics , Interleukin-4/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Microbiota/immunology , Pneumonia/prevention & control , Vancomycin/administration & dosage
3.
Microb Ecol ; 48(1): 29-40, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15085299

ABSTRACT

To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.


Subject(s)
Ecosystem , Nitrogen/metabolism , Soil Microbiology , Soil , Trees/microbiology , Bacteria/genetics , Biomass , British Columbia , Carbon/metabolism , DNA Primers , DNA, Ribosomal Spacer/genetics , Electrophoresis , Fungi/genetics , Phospholipids/metabolism
4.
Appl Microbiol Biotechnol ; 59(4-5): 551-6, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12172625

ABSTRACT

Bioremediation of weathered diesel fuel in Arctic soil at low temperature was studied both on-site in small-scale biopiles and in laboratory microcosms. The field study site was on Ellesmere Island (82 degrees 30'N, 62 degrees 20'W). Biostimulation was by fertilization with phosphorous and nitrogen. Bioaugmentation was with an enrichment culture originating from the field site. In biopiles, total petroleum hydrocarbons (TPH) were reduced from 2.9 to 0.5 mg/g of dry soil over a period of 65 days. In microcosms at 7 degrees C, TPH were reduced from 2.4 to 0.5 mg/g of dry soil over a period of 90 days. Inoculation had no effect on hydrocarbon removal in biopiles or in microcosms. Maximum TPH removal rates in the biopiles were approximately 90 micro g of TPH g(-1) of soil day(-1), occurring during the first 14 days when ambient temperature ranged from 0 to 10 degrees C. The fate of three phylotypes present in the inoculum was monitored using most-probable-number PCR, targeting 16S rRNA genes. Populations of all three phylotypes increased more than 100-fold during incubation of both uninoculated and inoculated biopiles. The inoculum increased the initial populations of the phylotypes but did not significantly affect their final populations. Thus, biostimulation on site enriched populations that were also selected in laboratory enrichment cultures.


Subject(s)
Bacteria/metabolism , Gasoline , Soil Microbiology , Soil Pollutants/metabolism , Arctic Regions , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , Culture Media , DNA, Ribosomal/analysis , Ecosystem , Genes, rRNA , Hydrocarbons/metabolism , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , Temperature
5.
Appl Microbiol Biotechnol ; 57(1-2): 242-7, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11693928

ABSTRACT

There is a need to develop technology to allow the remediation of soil in polar regions that have been contaminated by hydrocarbon fuel spills. Bioremediation is potentially useful for this purpose, but has not been well demonstrated in polar regions. We investigated biopiles for on-site bioremediation of soil contaminated with Arctic diesel fuel in two independent small-scale field experiments at different sites on the Arctic tundra. The results were highly consistent with one another. In biopiles at both sites, extensive hydrocarbon removal occurred after one summer. After 1 year in treatments with optimal conditions, total petroleum hydrocarbons were reduced from 196 to below 10 mg per kg of soil at one site, and from 2,109 to 195 mg per kg of soil at the other site. Addition of ammonium chloride and sodium phosphate greatly stimulated hydrocarbon removal and indicates that biodegradation was the primary mechanism by which this was achieved. Inoculation with cold-adapted, mixed microbial cultures further stimulated hydrocarbon removal during the summer immediately following inoculation. At one site, soil temperature was monitored during the summer season, and a clear plastic cover increased biopile soil temperature, measured as degree-day accumulation, by 30-49%. Our results show that on-site bioremediation of fuel-contaminated soil at Arctic tundra sites is feasible.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Soil Pollutants/metabolism , Arctic Regions , Soil Microbiology
6.
Appl Environ Microbiol ; 67(11): 5107-12, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11679333

ABSTRACT

Degradation of petroleum hydrocarbons was monitored in microcosms with diesel fuel-contaminated Arctic tundra soil incubated for 48 days at low temperatures (-5, 0, and 7 degrees C). An additional treatment was incubation for alternating 24-h periods at 7 and -5 degrees C. Hydrocarbons were biodegraded at or above 0 degrees C, and freeze-thaw cycles may have actually stimulated hydrocarbon biodegradation. Total petroleum hydrocarbon (TPH) removal over 48 days in the 7, 0, and 7 and -5 degrees C treatments, respectively, was 450, 300, and 600 microg/g of soil. No TPH removal was observed at -5 degrees C. Total carbon dioxide production suggested that TPH removal was due to biological mineralization. Bacterial metabolic activity, indicated by RNA/DNA ratios, was higher in the middle of the experiment (day 21) than at the start, in agreement with measured hydrocarbon removal and carbon dioxide production activities. The total numbers of culturable heterotrophs and of hydrocarbon degraders did not change significantly over the 48 days of incubation in any of the treatments. At the end of the experiment, bacterial community structure, evaluated by ribosomal intergenic spacer length analysis, was very similar in all of the treatments but the alternating 7 and -5 degrees C treatment.


Subject(s)
Bacteria/metabolism , Hydrocarbons/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Temperature , Arctic Regions , Bacteria/genetics , Biodegradation, Environmental , Ecosystem , Freezing , Gasoline
7.
Appl Environ Microbiol ; 67(6): 2669-76, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11375179

ABSTRACT

We investigated induction of biphenyl dioxygenase in the psychrotolerant polychlorinated biphenyl (PCB) degrader Pseudomonas strain Cam-1 and in the mesophilic PCB degrader Burkholderia strain LB400. Using a counterselectable gene replacement vector, we inserted a lacZ-Gm(r) fusion cassette between chromosomal genes encoding the large subunit (bphA) and small subunit (bphE) of biphenyl dioxygenase in Cam-1 and LB400, generating Cam-10 and LB400-1, respectively. Potential inducers of bphA were added to cell suspensions of Cam-10 and LB400-1 incubated at 30 degrees C, and then beta-galactosidase activity was measured. Biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately six times greater than the basal level in cells incubated with pyruvate. In contrast, the beta-galactosidase activities in LB400-1 incubated with biphenyl and in LB400-1 incubated with pyruvate were indistinguishable. At a concentration of 1 mM, most of the 40 potential inducers tested were inhibitory to induction by biphenyl of beta-galactosidase activity in Cam-10. The exceptions were naphthalene, salicylate, 2-chlorobiphenyl, and 4-chlorobiphenyl, which induced beta-galactosidase activity in Cam-10, although at levels that were no more than 30% of the levels induced by biphenyl. After incubation for 24 h at 7 degrees C, biphenyl induced beta-galactosidase activity in Cam-10 to a level approximately four times greater than the basal level in cells incubated with pyruvate. The constitutive level of beta-galactosidase activity in LB400-1 grown at 15 degrees C was approximately five times less than the level in LB400-1 grown at 30 degrees C. Thus, there are substantial differences in the effects of physical and chemical environmental conditions on genetic regulation of PCB degradation in different bacteria.


Subject(s)
Burkholderia/metabolism , Iron-Sulfur Proteins , Oxygenases/genetics , Polychlorinated Biphenyls/metabolism , Pseudomonas/metabolism , Biodegradation, Environmental , Cold Temperature , Enzyme Induction , Gene Expression Regulation, Bacterial , Genes, Reporter , Genetic Vectors , Hot Temperature , Lac Operon , Molecular Sequence Data , Selection, Genetic
8.
Appl Environ Microbiol ; 67(4): 1565-74, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11282606

ABSTRACT

We investigated the bacterial community structure in an aerated plug-flow lagoon treating pulp and paper mill effluent. For this investigation, we developed a composite method based on analyses of PCR amplicons containing the ribosomal intergenic spacer (RIS) and its flanking partial 16S rRNA gene. Community percent similarity was determined on the basis of RIS length polymorphism. A community succession was evident in the lagoon, indicated by a progressive community transition through seven sample locations. The most abrupt changes in community structure were associated with a temperature change from 39 to 35 degrees C and with increases in dissolved oxygen. The temporal differences in community structure, based on summer and winter samplings, were greater than the spatial differences during either season. Clone libraries of rDNA-RIS amplicons were constructed from each of three summer samples. Among 90 clones analyzed (30 clones from each sample), 56 phylotypes were distinguished by restriction fragment length polymorphism. Indices of phylotype richness, evenness, and diversity all increased in clone libraries from the beginning to the end of the lagoon. A representative clone of each phylotype was phylogenetically analyzed on the basis of its partial 16S rRNA gene sequence (ca. 450 bp). Phylogenetic analysis confirmed the increase in diversity and further indicated increasing richness of bacterial divisions. Pioneers in the community spatial succession appeared to include thermotolerant, microaerophilic methanol-oxidizing bacteria related to the genus Methylobacillus, as well as thermotolerant, microaerophilic nitrogen-fixing bacteria related to the genus Azospirillum.


Subject(s)
Bacteria/classification , DNA, Ribosomal Spacer/genetics , Oxygen/metabolism , Paper , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Waste Disposal, Fluid , Bacteria/genetics , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Ecosystem , Molecular Sequence Data , Phylogeny , Polymorphism, Restriction Fragment Length , Water Microbiology
9.
Water Res ; 35(4): 883-90, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11235883

ABSTRACT

Resin acids are the major toxicants in pulp and paper mill effluents (PPMEs), and they form pitch interfering with papermaking. Efficient and reliable resin acid removal is critically important to prevent toxicity discharge and ensure proper functioning of paper machines. Two resin-acid-degrading bacteria, Pseudomonas abietaniphila BKME-9 and Zoogloea resiniphila DhA-35, were tested in laboratory sequencing batch reactors (SBRs) for their ability to enhance resin acid removal by biomass from a full-scale biotreatment system treating PPMEs. Both bacteria enhanced resin acid removal but not removal of total organic carbon (TOC) by either pH-shocked or starved activated sludge. These two bacteria also increased resin acid removal when the sludge was given high concentration (200 microM) of resin acid. A most-probable-number polymerase chain reaction (MPN-PCR) assay showed that these two bacteria were initially not detectable (detection limit: 10(2) bacterial cells/ml) in the sludge community and were persistent after inoculation. Both bacteria did not substantially change the indigenous microbial community composition, as assayed by ribosomal intergenic spacer analysis (RISA). Our results suggest that it is feasible and potentially useful to enhance resin acid removal by bioaugmentation using resin-acid-degrading bacteria such as BKME-9 and DhA-35.


Subject(s)
Abietanes , Betaproteobacteria/metabolism , Diterpenes/metabolism , Pseudomonas/metabolism , Waste Disposal, Fluid , Water Pollutants, Chemical/metabolism , Base Sequence , Betaproteobacteria/genetics , Biodegradation, Environmental , Bioreactors , DNA Primers/genetics , Hydrogen-Ion Concentration , Paper , Polymerase Chain Reaction , Pseudomonas/genetics , Water Purification/methods
10.
Microb Ecol ; 42(3): 267-273, 2001 Oct.
Article in English | MEDLINE | ID: mdl-12024252

ABSTRACT

Efforts to understand and improve soil bioremediation are limited by our ability to determine how treatment variables affect microbial communities. A method was developed to monitor the density and metabolic activity of the total bacterial community in soil. This method was used to monitor the bacterial community in microcosms of Arctic soil after addition of N plus P to stimulate biodegradation of hydrocarbon contaminants. During 29 days of incubation, the total petroleum hydrocarbon level in the soil was reduced from 850 to 360 mg/g of soil. DNA and RNA were extracted from soil using a bead beating method, purified by ammonium acetate precipitation, and assayed by competitive PCR and RT-PCR assays with universal bacterial primers. The copy number of 16S rDNA in the soil microbial community was relatively stable and ranged from 1.7 x 109 to 4.5 x 109/g of soil throughout the incubation. The copy number of 16S rRNA changed substantially and ranged from 5.6 x 1010 to 1.0 x 1012/g of soil. The rRNA:rDNA ratio was highest during the phase of fastest hydrocarbon biodegradation. These results suggest that the treatment to stimulate hydrocarbon biodegradation did not substantially change the density of the bacterial community but did transiently increase its overall metabolic activity.

11.
Can J Microbiol ; 47(12): 1107-15, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11822837

ABSTRACT

A hydrocarbon-degrading consortium was enriched from fuel-contaminated soil from the northeastern tip of Ellesmere Island (82 degrees 30'N, 62 degrees 19'W). The enrichment culture was grown on Jet A-1 fuel at 7 degrees C. Bacterial 16S RNA gene (rDNA) fragments were amplified by polymerase chain reaction (PCR) from members of the above consortium and cloned into a plasmid vector. Partial sequences (approximately 500 bp) were determined for 29 randomly selected rDNA clones. The majority of sequences were most similar to the corresponding rDNA sequences of Rhodococcus erythropolis (15 sequences), Sphingomonas spp. (six sequences), and Pseudomonas synxantha (four sequences). Amplified ribosomal DNA restriction analysis confirmed that a larger set of 50 clones had frequencies of the three phylotypes similar to those above. Phylotype-specific PCR assays were developed and validated for the above three phylotypes. The consortium was plated and grown on Jet A-1 fuel vapors, and randomly selected isolated colonies were screened with the above PCR assays. Of 17 colonies, six matched the Rhodococcus phylotype, and three matched the Pseudomonas phylotype. A representative strain of each phylotype was physiologically characterized. Both isolates grew on alkanes at low temperature and had general characteristics consistent with their respective phylotypes. During growth of the consortium, the three phylotype populations were monitored by a most probable number PCR assay. All three phylotypes were detected, but their relative abundance was not consistent with that of the phylotypes in the clone library. The relative abundance of all three phylotypes changed substantially during long-term incubation of the consortium. The DNA-based approach used identified phylotypes consistently present in the consortium, but it failed to predict the relative abundance of their populations.


Subject(s)
Bacteria/isolation & purification , DNA, Ribosomal/analysis , Gasoline/microbiology , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Arctic Regions/epidemiology , Bacteria/genetics , Bacteria/growth & development , Culture Media , Ecosystem , Phylogeny , Polymerase Chain Reaction/methods , Pseudomonas/isolation & purification , Rhodococcus/isolation & purification , Sequence Analysis, DNA , Sphingomonas/isolation & purification
12.
Appl Environ Microbiol ; 66(12): 5148-54, 2000 Dec.
Article in English | MEDLINE | ID: mdl-11097882

ABSTRACT

Resin acids are tricyclic terpenoids occurring naturally in trees. We investigated the occurrence of resin acid-degrading bacteria on the Arctic tundra near the northern coast of Ellesmere Island (82 degrees N, 62 degrees W). According to most-probable-number assays, resin acid degraders were abundant (10(3) to 10(4) propagules/g of soil) in hydrocarbon-contaminated soils, but they were undetectable (<3 propagules/g of soil) in pristine soils from the nearby tundra. Plate counts indicated that the contaminated and the pristine soils had similar populations of heterotrophs (10(6) to 10(7) propagules/g of soil). Eleven resin acid-degrading bacteria belonging to four phylogenetically distinct groups were enriched and isolated from the contaminated soils, and representative isolates of each group were further characterized. Strains DhA-91, IpA-92, and IpA-93 are members of the genus Pseudomonas. Strain DhA-95 is a member of the genus Sphingomonas. All four strains are psychrotolerant, with growth temperature ranges of 4 degrees C to 30 degrees C (DhA-91 and DhA-95) or 4 degrees C to 22 degrees C (IpA-92 and IpA-93) and with optimum temperatures of 15 to 22 degrees C. Strains DhA-91 and DhA-95 grew on the abietanes, dehydroabietic and abietic acids, but not on the pimaranes, isopimaric and pimaric acids. Strains IpA-92 and IpA-93 grew on the pimaranes but not the abietanes. All four strains grew on either aliphatic or aromatic hydrocarbons, which is unusual for described resin acid degraders. Eleven mesophilic resin acid degraders did not use hydrocarbons, with the exception of two Mycobacterium sp. strains that used aliphatic hydrocarbons. We conclude that hydrocarbon contamination in Arctic tundra soil indirectly selected for resin acid degraders, selecting for hydrocarbon degraders that coincidentally use resin acids. Psychrotolerant resin acid degraders are likely important in the global carbon cycle and may have applications in biotreatment of pulp and paper mill effluents.


Subject(s)
Bacteria/metabolism , Soil Microbiology , Terpenes/metabolism , Arctic Regions , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Hydrocarbons/metabolism , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Resins, Plant/metabolism , Soil Pollutants/metabolism , Trees/metabolism
13.
J Bacteriol ; 182(13): 3784-93, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10850995

ABSTRACT

We have cloned and sequenced the dit gene cluster encoding enzymes of the catabolic pathway for abietane diterpenoid degradation by Pseudomonas abietaniphila BKME-9. The dit gene cluster is located on a 16.7-kb DNA fragment containing 13 complete open reading frames (ORFs) and 1 partial ORF. The genes ditA1A2A3 encode the alpha and beta subunits and the ferredoxin of the dioxygenase which hydroxylates 7-oxodehydroabietic acid to 7-oxo-11,12-dihydroxy-8, 13-abietadien acid. The dioxygenase mutant strain BKME-941 (ditA1::Tn5) did not grow on nonaromatic abietanes, and transformed palustric and abietic acids to 7-oxodehydroabietic acid in cell suspension assays. Thus, nonaromatic abietanes are aromatized prior to further degradation. Catechol 2,3-dioxygenase activity of xylE transcriptional fusion strains showed induction of ditA1 and ditA3 by abietic, dehydroabietic, and 7-oxodehydroabietic acids, which support the growth of strain BKME-9, as well as by isopimaric and 12, 14-dichlorodehydroabietic acids, which are diterpenoids that do not support the growth of strain BKME-9. In addition to the aromatic-ring-hydroxylating dioxygenase genes, the dit cluster includes ditC, encoding an extradiol ring cleavage dioxygenase, and ditR, encoding an IclR-type transcriptional regulator. Although ditR is not strictly required for the growth of strain BKME-9 on abietanes, a ditR::Km(r) mutation in a ditA3::xylE reporter strain demonstrated that it encodes an inducer-dependent transcriptional activator of ditA3. An ORF with sequence similarity to genes encoding permeases (ditE) is linked with genes involved in abietane degradation.


Subject(s)
Abietanes , Bacterial Proteins , Dioxygenases , Diterpenes/metabolism , Ferredoxins/genetics , Genes, Bacterial , Multigene Family , Oxygenases/genetics , Phenanthrenes/metabolism , Pseudomonas/enzymology , Base Sequence , DNA, Bacterial , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Molecular Sequence Data , Mutagenesis , Open Reading Frames , Pseudomonas/genetics , Pseudomonas/metabolism
14.
Arch Microbiol ; 172(3): 131-8, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10460883

ABSTRACT

Resin acids are tricyclic diterpenoids that are found in the oleoresin of coniferous trees. Resin-acid-degrading microorganisms are ubiquitous in the environment. The bacterial isolates that grow on resin acids as sole organic substrates are physiologically and phylogenetically diverse, and include psychrotolerant, mesophilic, and thermophilic bacteria. Recent studies of the biodegradation of resin acids by these organisms have demonstrated that in gram-negative bacteria, distinct biochemical pathways exist for the degradation of abietane- and pimerane-type resin acids. One of these organisms, Pseudomonas abietaniphila BKME-9, harbors a convergent pathway that channels the nonaromatic abietanes and dehydroabietic acid into 7-oxodehydroabietic acid. This dioxygenolytic pathway is encoded by the recently cloned and sequenced dit gene cluster. The dit cluster encodes the ferredoxin and the alpha- and beta-subunits of a new class of ring-hydroxylating dioxygenases as well as an extradiol ring-cleavage dioxygenase. Although it was previously thought that resin acids are very recalcitrant under anoxic conditions, recent investigations have demonstrated that they are partially metabolized under anoxic conditions by undefined microorganisms. The anaerobic degradation of resin acids principally generates aromatized and decarboxylated products (such as retene) that are thought to persist in the environment.


Subject(s)
Bacteria, Aerobic/metabolism , Diterpenes/metabolism , Resins, Plant/metabolism , Biodegradation, Environmental , Ecology , Phylogeny , Pseudomonas/genetics , Pseudomonas/metabolism , Resins, Plant/chemistry , Trees , Yeasts/metabolism
15.
Can J Microbiol ; 45(6): 513-9, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10453478

ABSTRACT

Using a semi-continuous enrichment method, we isolated two thermophilic bacterial strains, which could completely degrade abietane resin acids, including dehydroabietic acid (DhA). Strain DhA-73, isolated from a laboratory-scale bioreactor treating bleached kraft mill effluent at 55 degrees C, grew on DhA as sole carbon source; while DhA-71, isolated from municipal compost, required dilute tryptic soy broth for growth on DhA. DhA-71 grew on DhA from 30 degrees C to 60 degrees C with maximum growth at 50 degrees C; while, DhA-73 grew on DhA from 37 degrees C to 60 degrees C with maximum growth at 55 degrees C. At 55 degrees C, the doubling times for DhA-71 and DhA-73 were 3.3 and 3.7 h, respectively. DhA-71 and DhA-73 had growth yields of 0.26 and 0.19 g of protein per g of DhA, respectively. During growth on DhA, both strains converted DhA to CO2, biomass, and dissolved organic carbon. Analyses of the 16S-rDNA sequences of these two strains suggest that they belong to two new genera in the Rubrivivax subgroup of the beta subclass of the Proteobacteria. Strains DhA-71 and DhA-73 are the first two bacteria isolated and characterized that are capable of biodegradation of resin acids at high temperatures. This study provided direct evidence for biodegradation of resin acids and feasibility for biotreatment of pulp mill effluent at elevated temperatures.


Subject(s)
Abietanes , Bacteria/isolation & purification , Bacteria/metabolism , Diterpenes/metabolism , Bacteria/classification , Bacteria/genetics , Biodegradation, Environmental , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Industrial Waste , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Temperature , Waste Management
16.
J Bacteriol ; 181(9): 2675-82, 1999 May.
Article in English | MEDLINE | ID: mdl-10217753

ABSTRACT

Pseudomonas abietaniphila BKME-9 is able to degrade dehydroabietic acid (DhA) via ring hydroxylation by a novel dioxygenase. The ditA1, ditA2, and ditA3 genes, which encode the alpha and beta subunits of the oxygenase and the ferredoxin of the diterpenoid dioxygenase, respectively, were isolated and sequenced. The ferredoxin gene is 9. 2 kb upstream of the oxygenase genes and 872 bp upstream of a putative meta ring cleavage dioxygenase gene, ditC. A Tn5 insertion in the alpha subunit gene, ditA1, resulted in the accumulation by the mutant strain BKME-941 of the pathway intermediate, 7-oxoDhA. Disruption of the ferredoxin gene, ditA3, in wild-type BKME-9 by mutant-allele exchange resulted in a strain (BKME-91) with a phenotype identical to that of the mutant strain BKME-941. Sequence analysis of the putative ferredoxin indicated that it is likely to be a [4Fe-4S]- or [3Fe-4S]-type ferredoxin and not a [2Fe-2S]-type ferredoxin, as found in all previously described ring-hydroxylating dioxygenases. Expression in Escherichia coli of ditA1A2A3, encoding the diterpenoid dioxygenase without its putative reductase component, resulted in a functional enzyme. The diterpenoid dioxygenase attacks 7-oxoDhA, and not DhA, at C-11 and C-12, producing 7-oxo-11, 12-dihydroxy-8,13-abietadien acid, which was identified by 1H nuclear magnetic resonance, UV-visible light, and high-resolution mass spectrometry. The organization of the genes encoding the various components of the diterpenoid dioxygenase, the phylogenetic distinctiveness of both the alpha subunit and the ferredoxin component, and the unusual Fe-S cluster of the ferredoxin all suggest that this enzyme belongs to a new class of aromatic ring-hydroxylating dioxygenases.


Subject(s)
Abietanes , Bacterial Proteins , Dioxygenases , Diterpenes/metabolism , Ferredoxins/genetics , Oxygenases/genetics , Pseudomonas/genetics , Amino Acid Sequence , Cloning, Molecular , Ferredoxins/metabolism , Genes, Bacterial , Hydroxylation , Isoenzymes/genetics , Isoenzymes/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Oxygenases/classification , Oxygenases/metabolism , Phenanthrenes/metabolism , Pseudomonas/enzymology , Recombinant Proteins/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
17.
Syst Appl Microbiol ; 22(1): 68-78, 1999 Feb.
Article in English | MEDLINE | ID: mdl-10188280

ABSTRACT

Resin acids are tricyclic diterpenes which are synthesized by trees and are a major cause of toxicity of pulp mill effluents. Bacterial strains isolated from three different sources and which grow on resin acids were physiologically characterized. Eleven strains, representating distinct groups, were further characterized physiologically and phylogenetically. The isolates had distinct specificities for use, as growth substrates, of the different resin acids tested. The isolates also used fatty acids but were generally limited in use of other diverse substrates tested. According to their 16S rDNA sequences, the representative isolates are related to members of the genera, Sphingomonas, Zoogloea, Ralstonia, Burkholderia, Pseudomonas and Mycobacterium. Analysis of whole-cell fatty acid profiles generally supported those phylogenetic relationships. However, most of the isolated did not have high similarities to reference strains in the Microbial Identification System database of fatty acid profiles or in the Biolog database of substrate oxidation patterns. Described species of Sphingomonas, Zoolgoea, Burkholderia Pseudomonas, most closely related to the isolates we characterized, failed to grow on, or degrade, resin acids. We propose recognition of Zoogloea resiniphila sp. nov., Pseudomonas vancouverensis sp. nov., P. abietaniphila sp. nov. and P. multiresinivorans sp. nov.


Subject(s)
Bacteria, Aerobic/classification , Diterpenes/metabolism , Bacteria, Aerobic/chemistry , Bacteria, Aerobic/isolation & purification , DNA, Ribosomal/chemistry , Fatty Acids/analysis , Phylogeny , Pseudomonas/classification , RNA, Ribosomal, 16S/genetics , Zoogloea/classification
18.
J Microbiol Methods ; 35(2): 163-6, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10192049

ABSTRACT

We have developed an alternative method to amplify DNA sequences flanking Tn5 transposon insertions. This method relies on the identical sequences of inverted terminal repeats, located at the 5' and 3' ends of Tn5, to determine the location and orientation of a transposon insertion within a restriction endonuclease fragment. From this information, PCR primers can be designed to selectively amplify by inverse PCR the DNA flanking one side of the transposon. This method avoids the problem of amplifying or cloning long sequences flanking Tn5. To demonstrate the applicability of this method, we generated Tn5 transposon mutants of Pseudomonas abietaniphila BKME-9 which no longer grew on dehydroabietic acid (DhA). The flanking sequence of one of the mutant (strain BKME-941) which accumulated 7-oxoDhA, was amplified.


Subject(s)
Abietanes , DNA Transposable Elements , DNA, Bacterial/analysis , Polymerase Chain Reaction/methods , Pseudomonas/genetics , Blotting, Southern , DNA, Bacterial/isolation & purification , Diterpenes/metabolism , Mutagenesis, Insertional , Pseudomonas/growth & development
19.
J Ind Microbiol Biotechnol ; 23(4-5): 374-379, 1999 Oct.
Article in English | MEDLINE | ID: mdl-11423958

ABSTRACT

Abietane terpenoid-degrading organisms include Sphingomonas spp which inhabit natural environments and biological treatment systems. An isolate from the high Arctic indicates that these organisms occur far from trees which synthesize abietanes and suggests that some of these organisms can occupy a niche in hydrocarbon-degrading soil communities. Abietane-degrading Sphingomonas spp provide additional evidence that the phylogeny of this genus is independent of the catabolic capabilities of its members. Studies of Sphingomonas sp DhA-33 demonstrate that biological treatment systems for pulp mill effluents have the potential to mineralize abietane resin acids. On the other hand, these studies indicate that some chlorinated dehydroabietic acids are quite recalcitrant. Strain DhA-33 grows relatively well on some chlorinated dehydroabietic acids but transforms others to stable metabolites. Using strain DhA-33, a novel method was developed to measure the metabolic activity of an individual population within a complex microbial community. Oligonucleotide hybridization probes were used to assay the 16S rRNA:rDNA ratio of DhA-33 as it grew in an activated sludge community. However, this method proved not to be sufficiently sensitive to measure naturally occurring resin acid-degrading populations. We propose that the same approach can be modified to use more sensitive assays.

20.
J Bacteriol ; 181(1): 40-6, 1999 Jan.
Article in English | MEDLINE | ID: mdl-9864310

ABSTRACT

Desulfomonile tiedjei DCB-1, a sulfate-reducing bacterium, conserves energy for growth from reductive dehalogenation of 3-chlorobenzoate by an uncharacterized chemiosmotic process. Respiratory electron transport components were examined in D. tiedjei cells grown under conditions for reductive dehalogenation, pyruvate fermentation, and sulfate reduction. Reductive dehalogenation was inhibited by the respiratory quinone inhibitor 2-heptyl-4-hydroxyquinoline N-oxide, suggesting that a respiratory quinoid is a component of the electron transport chain coupled to reductive dehalogenation. Moreover, reductive dehalogenation activity was dependent on 1, 4-naphthoquinone, a possible precursor for a respiratory quinoid. However, no ubiquinone or menaquinone could be extracted from D. tiedjei. Rather, a UV-absorbing quinoid which is different from common respiratory quinones in chemical structure according to mass spectrometric and UV absorption spectroscopic analyses was extracted. ATP sulfurylase, adenosine phosphosulfate reductase, and desulfoviridin sulfite reductase, enzymes involved in sulfate reduction, were constitutively expressed in the cytoplasm of D. tiedjei cells grown under all three metabolic conditions. A periplasmic hydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. A membrane-bound, periplasm-oriented formate dehydrogenase was detected only in cells grown with formate as electron donor, while a cytoplasmic formate dehydrogenase was detected in cells grown under reductive-dehalogenating and pyruvate-fermenting conditions. Results from dehalogenation assays with D. tiedjei whole-cell suspensions and cell extracts suggest that the membrane-bound reductive dehalogenase is cytoplasm oriented. The data clearly demonstrate an enzyme topology in D. tiedjei which produces protons directly in the periplasm, generating a proton motive force by a scalar mechanism.


Subject(s)
Models, Biological , Proton-Motive Force , Sulfur-Reducing Bacteria/metabolism , Cell Membrane/metabolism , Cytoplasm/metabolism , Electron Transport , Environmental Pollutants/metabolism , Formate Dehydrogenases/metabolism , Hydrocarbons, Halogenated/metabolism , Hydrogenase/metabolism , Oxidation-Reduction , Quinones/metabolism , Sulfates/metabolism , Sulfur-Reducing Bacteria/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...