Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ecol ; 14: 8, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24641813

ABSTRACT

BACKGROUND: Specialized interactions help structure communities, but persistence of specialized organisms is puzzling because a generalist can occupy more environments and partake in more beneficial interactions. The "Jack-of-all-trades is a master of none" hypothesis asserts that specialists persist because the fitness of a generalist utilizing a particular habitat is lower than that of a specialist adapted to that habitat. Yet, there are many reasons to expect that mutualists will generalize on partners.Plant-soil feedbacks help to structure plant and microbial communities, but how frequently are soil-based symbiotic mutualistic interactions sufficiently specialized to influence species distributions and community composition? To address this question, we quantified realized partner richness and phylogenetic breadth of four wild-grown native legumes (Lupinus bicolor, L. arboreus, Acmispon strigosus and A. heermannii) and performed inoculation trials to test the ability of two hosts (L. bicolor and A. strigosus) to nodulate (fundamental partner richness), benefit from (response specificity), and provide benefit to (effect specificity) 31 Bradyrhizobium genotypes. RESULTS: In the wild, each Lupinus species hosted a broader genetic range of Bradyrhizobium than did either Acmispon species, suggesting that Acmispon species are more specialized. In the greenhouse, however, L. bicolor and A. strigosus did not differ in fundamental association specificity: all inoculated genotypes nodulated both hosts. Nevertheless, A. strigosus exhibited more specificity, i.e., greater variation in its response to, and effect on, Bradyrhizobium genotypes. Lupinus bicolor benefited from a broader range of genotypes but averaged less benefit from each. Both hosts obtained more fitness benefit from symbionts isolated from conspecific hosts; those symbionts in turn gained greater fitness benefit from hosts of the same species from which they were isolated. CONCLUSIONS: This study affirmed two important tenets of evolutionary theory. First, as predicted by the Jack-of-all-trades is a master of none hypothesis, specialist A. strigosus obtained greater benefit from its beneficial symbionts than did generalist L. bicolor. Second, as predicted by coevolutionary theory, each test species performed better with partner genotypes isolated from conspecifics. Finally, positive fitness feedback between the tested hosts and symbionts suggests that positive plant-soil feedback could contribute to their patchy distributions in this system.


Subject(s)
Bradyrhizobium/physiology , Fabaceae/microbiology , Symbiosis/physiology , Bradyrhizobium/genetics , California , DNA, Bacterial/genetics , Fabaceae/physiology , Genetic Fitness , Genotype , Phylogeny , Plant Root Nodulation
2.
Mol Plant Microbe Interact ; 23(10): 1303-15, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20831409

ABSTRACT

Plants disease resistance (R) genes encode specialized receptors that are quantitative, rate-limiting defense regulators. R genes must be expressed at optimum levels to function properly. If expression is too low, downstream defense responses are not activated efficiently. Conversely, overexpression of R genes can trigger autoactivation of defenses with deleterious consequences for the plant. Little is known about R gene regulation, particularly under defense-inducing conditions. We examined regulation of the Arabidopsis thaliana gene RPP8 (resistance to Hyaloperonospora arabidopsidis, isolate Emco5). RPP8 was induced in response to challenge with H. arabidopsidis or application of salicylic acid, as shown with RPP8-Luciferase transgenic plants and quantitative reverse-transcription polymerase chain reaction of endogenous alleles. The RPP1 and RPP4 genes were also induced by H. arabidopsidis and salicylic acid, suggesting that some RPP genes are subject to feedback amplification. The RPP8 promoter contains three W box cis elements. Site-directed mutagenesis of all three W boxes greatly diminished RPP8 basal expression, inducibility, and resistance in transgenic plants. Motif searches indicated that the W box is the only known cis element that is statistically overrepresented in Arabidopsis nucleotide-binding leucine-rich repeat promoters. These results indicate that WRKY transcription factors can regulate expression of surveillance genes at the top of the defense-signaling cascade.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/physiology , Oomycetes/physiology , Salicylic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/drug effects , Host-Pathogen Interactions , Luciferases/genetics , Luciferases/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic
3.
Appl Environ Microbiol ; 74(10): 3171-81, 2008 May.
Article in English | MEDLINE | ID: mdl-18378665

ABSTRACT

Pseudomonas syringae pv. tomato strain DC3000 (PtoDC3000) is one of the most intensively studied bacterial plant pathogens today. Here we report a thorough investigation into PtoDC3000 and close relatives isolated from Antirrhinum majus (snapdragon), Apium graveolens (celery), and Solanaceae and Brassicaceae species. Multilocus sequence typing (MLST) was used to resolve the precise phylogenetic relationship between isolates and to determine the importance of recombination in their evolution. MLST data were correlated with an analysis of the locus coding for the type III secreted (T3S) effector AvrPto1 to investigate the role of recombination in the evolution of effector repertoires. Host range tests were performed to determine if closely related isolates from different plants have different host ranges. It was found that PtoDC3000 is located in the same phylogenetic cluster as isolates from several Brassicaceae and Solanaceae species and that these isolates have a relatively wide host range that includes tomato, Arabidopsis thaliana, and cauliflower. All other analyzed tomato isolates from three different continents form a distinct cluster and are pathogenic only on tomato. Therefore, PtoDC3000 is a very unusual tomato isolate. Several recombination breakpoints were detected within sequenced gene fragments, and population genetic tests indicate that recombination contributed more than mutation to the variation between isolates. Moreover, recombination may play an important role in the reassortment of T3S effectors between strains. The data are finally discussed from a taxonomic standpoint, and P. syringae pv. tomato is proposed to be divided into two pathovars.


Subject(s)
Evolution, Molecular , Plant Diseases/microbiology , Plants/microbiology , Pseudomonas syringae/genetics , Recombination, Genetic , Bacterial Proteins/genetics , Bacterial Typing Techniques , Chromosomes, Bacterial , Cluster Analysis , DNA, Bacterial/genetics , Genotype , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , Pseudomonas syringae/classification , Pseudomonas syringae/isolation & purification , Pseudomonas syringae/pathogenicity , Sequence Analysis, DNA
4.
J Bacteriol ; 190(8): 2858-70, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18263729

ABSTRACT

Pseudomonas syringae causes plant diseases, and the main virulence mechanism is a type III secretion system (T3SS) that translocates dozens of effector proteins into plant cells. Here we report the existence of a subgroup of P. syringae isolates that do not cause disease on any plant species tested. This group is monophyletic and most likely evolved from a pathogenic P. syringae ancestor through loss of the T3SS. In the nonpathogenic isolate P. syringae 508 the genomic region that in pathogenic P. syringae strains contains the hrp-hrc cluster coding for the T3SS and flanking effector genes is absent. P. syringae 508 was also surveyed for the presence of effector orthologues from the closely related pathogenic strain P. syringae pv. syringae B728a, but none were detected. The absence of the hrp-hrc cluster and effector orthologues was confirmed for other nonpathogenic isolates. Using the AvrRpt2 effector as reporter revealed the inability of P. syringae 508 to translocate effectors into plant cells. Adding a plasmid-encoded T3SS and the P. syringae pv. syringae 61 effector gene hopA1 increased in planta growth almost 10-fold. This suggests that P. syringae 508 supplemented with a T3SS could be used to determine functions of individual effectors in the context of a plant infection, avoiding the confounding effect of other effectors with similar functions present in effector mutants of pathogenic isolates.


Subject(s)
Bacterial Proteins/physiology , Carrier Proteins/physiology , DNA, Bacterial/genetics , Pseudomonas syringae/pathogenicity , Virulence Factors/physiology , Arabidopsis/microbiology , Bacterial Proteins/genetics , Blotting, Southern , Carrier Proteins/genetics , Cluster Analysis , DNA, Bacterial/chemistry , Gene Deletion , Genome, Bacterial , Molecular Sequence Data , Multigene Family , Phylogeny , Plant Diseases/microbiology , Polymerase Chain Reaction , Protein Transport , Pseudomonas syringae/growth & development , Pseudomonas syringae/isolation & purification , Pseudomonas syringae/metabolism , Sequence Analysis, DNA , Nicotiana/microbiology , Virulence , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...