Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(2): e03283, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32055730

ABSTRACT

In this work, decoration of the graphene surface with 5 wt. % ZnO nanorods (ZnO NRs), to ensure the potential photocatalytic performance of the formed nanocomposites, is demonstrated. Graphene oxide (GO) was synthesized with Hummer method followed by reduction to give reduced graphene oxide (RGO). The adjustable nano-compositing exhibited long-sought workability not only in in-situ incorporation of nanorods while reduction of graphene oxide (IZG) but also in ex-situ mixing of RGO or GO with the nanorods, (EZG) and (ZGO) respectively. The demineralization of synthetic wastewater has been evaluated by chemical oxygen demand and the obtained nanocomposites possess enhanced photocatalytic activities with 30 % and 35% over pure RGO and GO, respectively. This higher efficiency could be attributed to the synergistic effect between ZnO and the planner structure of graphene sheets which developed unprecedented polycrystalline structure. Also, the results proved that even the RGO or GO have played a dual function in photocatalysis, adsorption, and degradation. Also, the bactericidal effect of the prepared samples was studied against deleterious microorganisms. The findings of this work pave the way for the new generation of highly efficient photocatalysts based graphene with economic attraction and environmental impact.

2.
Carbohydr Polym ; 168: 212-219, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28457442

ABSTRACT

Paper sheets made from bagasse pulp have been modified using nanocellulose (NC) obtained from the same raw material. Modification of paper sheets have been carried out either through loading of paper with different concentrations of NC and antibacterial agent, Chitosan (Ch) during making sheets, or by surface coating of the paper. Crystals of NC extracted using concentrated sulfuric acid from bagasse pulp were found to have crystallinity index (CrI) 90%. Morphology of obtained NC has been confirmed by TEM and images revealed formation of NC crystals with large size distribution ranges from 4 to 60nm. Mechanical properties and air permeability of paper sheets loaded with different ratios of NC and Ch have been investigated. The results showed that presence of NC did not negatively affect the obtained modified paper sheets, while air permeability decreased with adding 8% NC to paper matrix. On the other hand, surface coverage of paper sheets with NC greatly reduced air permeability. Antimicrobial investigations carried out by optical density method indicated that presence of Ch in the paper sheets as an additive or in a coating formulation enhanced paper resistance to different microorganisms especially those causing food poisoning. The current study confirms that the modified paper can have potential application in food packaging.


Subject(s)
Cellulose/chemistry , Chitosan/chemistry , Food Packaging , Nanostructures , Paper , Anti-Infective Agents , Food Contamination/prevention & control , Food Microbiology , Permeability
3.
Carbohydr Polym ; 148: 194-9, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27185131

ABSTRACT

Photocatalytic paper sheets were prepared by addition of different ratios of TiO2/Sodium alginate (TSA) nanocomposite. The modified paper sheets were characterized by XRD, TGA. Their morphology was studied by scanning electron microscope (SEM) and energy dispersive X-ray (EDX). Photocatalytic activity of modified paper has been studied by analysis of chemical oxygen demand (COD) of waste-water. The results confirmed the mineralization of the waste-water and enhanced removal of chemical oxygen demand (COD) by increasing the amount of photocatalyst in the paper. Moreover, the results also confirmed that presence of sodium alginate as biopolymer increased adhesion of nanoparticles to paper fibers and reduced the harmful effect of the photocatalyst on them. The paper sheets containing 7% as well as 15% TSA showed high photocatalytic activity and anti-bacterial effect against Salmonella typhimurium higher than standard antibiotic beside other microorganisms such as Candida albicans. The maximum antimicrobial effect was found in case of specimen loaded with 15% TSA. Moreover, it was found that by adding 20% TSA to the paper matrix, the properties of the paper composite collapse. The obtained results confirm the possible utilization of the modified paper in both hygienic and food packaging applications.


Subject(s)
Alginates/pharmacology , Nanocomposites , Paper , Titanium/pharmacology , Alginates/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Candida albicans/drug effects , Catalysis/drug effects , Glucuronic Acid/chemistry , Glucuronic Acid/pharmacology , Hexuronic Acids/chemistry , Hexuronic Acids/pharmacology , Microscopy, Electron, Scanning , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Photochemistry , Spectrometry, X-Ray Emission , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...