Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(38): 14363-14372, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37715305

ABSTRACT

The abiotic fate of dissolved free amino acids considerably contributes to the cycling of dissolved sulfur and nitrogen in natural aquatic environments. However, the roles of the functional groups of chromophoric dissolved organic matter (CDOM) and the fate of free amino acids under sunlight irradiation in fresh waters are not fully understood. This study aims to elucidate the fate of photolabile methionine in the presence of three CDOM surrogate compounds, i.e., 1,4-naphthoquinone, 2-naphthaldehyde, and umbelliferone, and two standard CDOM by coupling experimental measurement, quantum chemical computations, and kinetic modeling. Results indicate that excited triplet-state CDOM and hydroxyl radicals are able to cleave the C-S bond in methionine, resulting in the formation of smaller amino acids and volatile sulfur-containing compounds. Singlet oxygen forms methionine sulfoxide and methionine sulfone. The distribution of phototransformation products offers an improved understanding of the fate of nitrogen- and sulfur-containing compounds and their uptake by microorganisms in natural aquatic environments.


Subject(s)
Dissolved Organic Matter , Sunlight , Methionine , Racemethionine , Amino Acids
2.
Environ Sci Technol ; 55(12): 8054-8067, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34096699

ABSTRACT

Singlet oxygen (1O2) is a selective reactive oxygen species that plays a key role for the fate of various organic compounds in the aquatic environment under sunlight irradiation, engineered water oxidation systems, atmospheric water droplets, and biomedical systems. While the initial rate-determining charge-transfer reaction mechanisms and kinetics of 1O2 have been studied extensively, no comprehensive studies have been performed to elucidate the reaction mechanisms with organic compounds that have various functional groups. In this study, we use density functional theory calculations to determine elementary reaction mechanisms with a wide variety of organic compounds. The theoretically calculated aqueous-phase free energies of activation of single electron transfer and 1O2 addition reactions are compared to the experimentally determined rate constants in the literature to determine linear free-energy relationships. The theoretically calculated free energies of activation for the groups of phenolates and phenols show excellent correlations with the Hammett constants that accept electron densities by through-resonance. The dominant elementary reaction mechanism is discussed for each group of compounds. As a practical implication, we demonstrate the fate of environmentally relevant organic compounds induced by photochemically produced intermediate species at different pH and evaluate the impact of predicting rate constants to the half-life.


Subject(s)
Organic Chemicals , Singlet Oxygen , Kinetics , Oxidation-Reduction , Oxygen , Water
3.
Environ Sci Technol ; 54(8): 5167-5177, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32208649

ABSTRACT

Reverse osmosis (RO) is a membrane technology that separates dissolved species from water. RO has been applied for the removal of chemical contaminants from water for potable reuse applications. The presence of a wide variety of influent chemical contaminants and the insufficient rejection of low-molecular-weight neutral organics by RO calls for the need to develop a model that predicts the rejection of various organics. In this study, we develop a group contribution method (GCM) to predict the mass transfer coefficients by fragmenting the structure of low-molecular-weight neutral organics into small parts that interact with the RO membrane. Overall, 54 organics including 26 halogenated and oxygenated alkanes, 8 alkenes, and 20 alkyl and halobenzenes were used to determine 39 parameters to calibrate for 6 different RO membranes, including 4 brackish water and 2 seawater membranes. Through six membranes, approximately 80% of calculated rejection was within an error goal (i.e., ±5%) from the experimental observation. To extend the GCM for a reference RO membrane, ESPA2-LD, 14 additional organics were included from the literature to calibrate nitrogen-containing functional groups of nitrosamine, nitriles, and amide compounds. Overall, 49 organics (72% of 68 compounds) from calibration and 7 compounds (87.5% of 8 compounds) from prediction were within the error goal.


Subject(s)
Water Pollutants, Chemical , Water Purification , Filtration , Membranes, Artificial , Osmosis
SELECTION OF CITATIONS
SEARCH DETAIL
...