Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38920960

ABSTRACT

The Gels Editorial Office retracts the article, "Employing of Curcumin-Silver Nanoparticle-Incorporated Sodium Alginate-Co-Acacia Gum Film Hydrogels for Wound Dressing" [...].

2.
Gels ; 9(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37888353

ABSTRACT

Skin wound healing is time-consuming and frequently accompanied by bacterial infections and the development of scars. The rise of antibiotic-resistant bacterial strains has sparked a growing interest in naturally occurring bioactive substances, like curcumin, that possess wound-healing capabilities. Silver is a natural antimicrobial agent, and finds extensive use in specialized wound dressings. Silver nanoparticles (AgNPs) were synthesized using an eco-friendly approach, employing curcumin. The prepared nanoparticles have been characterized using TEM, DLS, and zeta potential. The prepared AgNPs were loaded on sodium alginate-co-gum arabic hydrogel. Two hydrogel samples (with and without AgNPs) have been applied for wound healing. The developed silver nanoparticles that were created exhibited effective action against both types of bacteria, namely Gram-negative and Gram-positive. Alg-co-AG-AgNPs demonstrated faster wound healing rates compared to using the control hydrogel sample. The novel dressings of curcumin-silver nanoparticle-incorporated sodium alginate-co-gum arabic hydrogels (Alg-co-AG-AgNPs) exhibited exceptional biocompatibility and have the potential to serve as a wound dressing that possesses antibacterial properties and reduces scarring.

3.
Gels ; 9(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37623101

ABSTRACT

The prevalence of chronic wounds is increasing owing to the expanding population and the growing number of individuals suffering from diabetes. Such a chronic wound continues to be a significant healthcare burden for diabetic patients because it frequently carries a high chance of limb loss due to amputation and reduces survival as a result. Development of innovative wound dressing materials with the potential to stop bacterial infections and accelerate the process of tissue regeneration is needed to increase the effectiveness of diabetic wound healing. In the current study, a co-polymerization process based on a free radical reaction was used to create a hydrogel of polysaccharides blend graft acrylamide (PsB-g-Am). Starch, chitosan, and alginate make up the polysaccharides blend (PsB). The produced hydrogel's structure was characterized using FTIR spectroscopy. The antibacterial activities of silver nanoparticles synthesized through the green method using garlic bulb (Allium sativum) is reported. The silver nanoparticles' physical characteristics were examined using scanning electron microscopy, transmission electron microscopy analysis, and UV-visible spectroscopy and they were found to range in size from 50 to 100 nm. The agar well diffusion technique is used to investigate the antibacterial characteristics. Inclusion of silver nanoparticles in the hydrogels demonstrated concentration-dependent antibacterial behavior against Gram-negative Klebsiella pneumoniae and Gram-positive Staphylococcus aureus during antimicrobial testing of the hydrogels. When hydrogels were applied to diabetic mice, the system was examined for its healing abilities, and positive therapeutic results were obtained in as little as 14 days. Thus, it can be inferred that graft copolymer of chitosan-AgNPs hydrogels can promote healing in chronic wounds over time and can be utilized as an alternative to conventional therapies for chronic wounds (such as those brought on by diabetes) in mouse models.

4.
Gels ; 9(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37504410

ABSTRACT

Wound healing is a biological process that involves a series of consecutive process, and its impairment can lead to chronic wounds and various complications. Recently, there has been a growing interest in employing nanotechnology to enhance wound healing. Silver nanoparticles (AgNPs) have expanded significant attention due to their wide range of applications in the medical field. The advantages of AgNPs include their easy synthesis, change their shape, and high surface area. Silver nanoparticles are very efficient for topical drug administration and wound healing because of their high ratio of surface area to volume. The efficiency of AgNPs depends on the synthesis method and the intended application. Green synthesis methods offer an eco-friendly approach by utilizing natural sources such as plant extracts and fungus. The characterization of nanoparticles plays an important character, and it is accomplished through the use of several characterization methods such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). These techniques are employed to confirm the specific characters of the prepared Silver Nanoparticles. Additionally, the review addresses the challenges and future perspectives of utilizing green-synthesized AgNPs loaded in Polyacrylamide hydrogel for wound healing applications, including the optimization of nanoparticle size, and release kinetics. Overall, this review highlights the potential of green-synthesized AgNPs loaded in Polyacrylamide hydrogel as promising for advanced wound healing therapies. There are different approaches of usage of AgNPs for wound healing such as polyacrylamide -hydrogels, and the mechanism after their antibacterial action, have been exposed.

5.
Molecules ; 28(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37050003

ABSTRACT

Silver nanoparticle composites have abundant biomedical applications due to their unique antibacterial properties. In the current work, green tea leaf extract was used as a natural reducing agent to synthesize AgNPs (AgNPs) using microwave irradiation technology. Furthermore, microwave irradiation has been used for the preparation of AgNPs/chitosan (Ch) grafted polyvinyl alcohol (PVA) hydrogel samples. To approve the accomplishment of AgNPs hydrogel polymer, UV-spectrum, TEM, and FT-IR spectrum analyses and the release of silver ions, actions were taken. The wound-healing ability of the prepared hydrogel samples was measured via both the in vitro (fibroblast cells) and the in vivo using rat models. It was found that chitosan-grafted polyvinyl alcohol, including AgNPs, exhibited excellent antibacterial activity against E. coli and S. aureus using the agar diffusion method. It can be said that microwave irradiation was successful in creating a hydrogel that contained silver nanoparticles. A wound that was still open was successfully treated with these composites.


Subject(s)
Chitosan , Metal Nanoparticles , Rats , Animals , Silver , Spectroscopy, Fourier Transform Infrared , Polyvinyl Alcohol , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Hydrogels/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...