Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1366614, 2024.
Article in English | MEDLINE | ID: mdl-38803373

ABSTRACT

Introduction: In recent years, the world's attention has been drawn to antimicrobial resistance (AMR) because to the frightening prospect of growing death rates. Nanomaterials are being investigated due to their potential in a wide range of technical and biological applications. Methods: The purpose of this study was to biosynthesis zinc oxide nanoparticles (ZnONPs) using Aspergillus sp. SA17 fungal extract, followed by characterization of the produced nanoparticles (NP) using electron microscopy (TEM and SEM), UV-analysis, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). Results and Discussion: The HR-TEM revealed spherical nanoparticles with an average size of 7.2 nm, and XRD validated the crystalline nature and crystal structure features of the generated ZnONPs, while the zeta potential was 18.16 mV, indicating that the particles' surfaces are positively charged. The FT-IR was also used to identify the biomolecules involved in the synthesis of ZnONPs. The antibacterial and anticancer properties of both the crude fungal extract and its nano-form against several microbial strains and cancer cell lines were also investigated. Inhibition zone diameters against pathogenic bacteria ranged from 3 to 13 mm, while IC50 values against cancer cell lines ranged from 17.65 to 84.55 M. Additionally, 33 compounds, including flavonoids, phenolic acids, coumarins, organic acids, anthraquinones, and lignans, were discovered through chemical profiling of the extract using UPLC-QTOF-MS/MS. Some molecules, such pomiferin and glabrol, may be useful for antibacterial purposes, according to in silico study, while daidzein 4'-sulfate showed promise as an anti-cancer metabolite.

2.
Plants (Basel) ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611505

ABSTRACT

In this study, flower and leaf extracts of Colvillea racemosa were considered a source of bioactive compounds. In this context, the objective of the study focused on investigating the anticancer potential as well as the phytochemical composition of both extracts. The extracts were analyzed by UPLC-ESI-QTOF-MS, and the bioactivity was tested using in vitro antioxidant assays (FRAP, DPPH, and ABTS) in addition to cytotoxic assays on non-small cell lung cancer cell line (A549). Our results clearly indicated the potent radical scavenging capacity of both extracts. Importantly, the flower extract exhibited a greater antioxidant capacity than the leaf extract. In terms of cytotoxic activity, leaf and flower extracts significantly inhibited cell viability with IC50 values of 17.0 and 17.2 µg/mL, respectively. The phytochemical characterization enabled the putative annotation of 42 metabolites, such as saccharides, phenolic acids, flavonoids, amino acids, and fatty acids. Among them, the flavonoid C-glycosides stand out due to their high relative abundance and previous reports on their anticancer bioactivity. For a better understanding of the bioactive mechanisms, four flavonoids (vitexin, kaempferol-3-O-rutinoside, luteolin, and isoorientin) were selected for molecular docking on hallmark protein targets in lung cancer as represented by γ-PI3K, EGFR, and CDK2 through in-silico studies. In these models, kaempferol-3-O-rutinoside and vitexin had the highest binding scores on γ-PI3K and CDK2, followed by isoorientin, so they could be highly responsible for the bioactive properties of C. racemosa extracts.

3.
Food Chem ; 404(Pt B): 134650, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36283320

ABSTRACT

Hylocereus spp. known as dragon fruit is an exotic fruit that belongs to the Cactaceae family. LC-QTOF-MS and multivariate statistical tools were established to analyze differences in the composition of dragon fruit peel and pulp from Egypt, Germany, Philippines, and China. The α-glucosidase inhibitory effects of different extracts were carried out along with the anti-glycation end products (AGE) using BSA-fructose, BSA-methylglyoxal, and arginine-methylglyoxal assays. In addition, the total antioxidant capacity was investigated as a complementary mechanism to AGE formation. Principal component analysis revealed that dragon fruits from China and Egypt were the most distinct among all samples due to betalains content. Orthogonal projection to latent structures-discriminant analysis identified 16 compounds highly correlated to the antiglycation activity such as betanin, γ-aminobutyric acid, neobetanin, and portulacaxanthin II. Pulp extracts were more active than peels as inhibitors of α-glucosidase. While peels were more active as AGE formation inhibitors and as antioxidants.


Subject(s)
Cactaceae , Hypoglycemic Agents , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , alpha-Glucosidases/metabolism , Pyruvaldehyde/metabolism , Chemometrics , Cactaceae/metabolism , Fruit/chemistry , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/metabolism
4.
Food Funct ; 13(14): 7794-7812, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35766389

ABSTRACT

Age-related diseases, including dementia, are a major health concern affecting daily human life. Strawberry (Fragaria ananassa Duch.) is the most eaten fruit worldwide due to its exceptional aroma and flavor. However, it's rapid softening and decay limit its shelf-life. Freezing and boiling represent the well-known conservation methods to extend its shelf-life. Therefore, we aimed to discover the phytochemical content differences of fresh and processed strawberries associated with investigating and comparing their neuroprotective effects in a rat model of aging. Female Wistar rats were orally pretreated with fresh, boiled, and frozen F. ananassa methanolic extracts (250 mg kg-1) for 2 weeks, and then these extracts were concomitantly exposed to D-galactose [65 mg kg-1, subcutaneously (S/C)] and AlCl3 (200 mg kg-1, orally) for 6 weeks to develop aging-like symptoms. The results of UPLC/ESI-MS phytochemical profiling revealed 36 secondary metabolites, including phenolics, flavonoids, and their glycoside derivatives. Compared with boiled and frozen extracts, the fresh extract ameliorated the behavioral deficits including anxiety and cognitive dysfunction, upregulated brain HO-1 and Nrf2 levels, and markedly reduced caspase-3 and PPAR-γ levels. Moreover, LDH and miRNA-9, 124 and 132 protein expressions were reduced. The histological architecture of the brain hippocampus was restored and glial fibrillary acidic protein (GFAP) immunoexpression was downregulated. In conclusion, the fresh extract has neuroprotective activity that could have a promising role in ameliorating age-related neurodegeneration.


Subject(s)
Fragaria , Aging , Aluminum Chloride , Animals , Female , Fragaria/chemistry , Fruit/chemistry , Galactose/adverse effects , Galactose/metabolism , Humans , Phenols/analysis , Phytochemicals/analysis , Plant Extracts/metabolism , Rats , Rats, Wistar
5.
Article in English | MEDLINE | ID: mdl-34052752

ABSTRACT

Detailed metabolic profiling of needles of five Pinus species was investigated using complementary HPLC-MS/MS techniques together with supervised and unsupervised chemometric tools. This resulted in putative identification of 44 compounds belonging to flavonoids, phenolics, lignans, diterpenes and fatty acids. Unsupervised principal component analysis showed that differences were maintained across the metabolites characteristic of each Pinus species, are mainly related to di-O-p-coumaroyltrifolin, p-coumaroyl quinic acid derivative, arachidonic acid, hydroxypalmitic acid, isopimaric acid and its derivative. A supervised Partial Least Squares regression analysis was performed to correlate HPLC-MS/MS profiles with the variation observed in the in vitro anticholinesterase, antiaging and anti-diabetic potential. All investigated Pinus extracts exerted their antiaging activity via increasing telomerase and TERT levels in normal human melanocytes cells compared to the control (untreated cells). Profound inhibition activities of acetylcholinesterase and dipeptidyl peptidase-4 were also observed with P. pinea and P. canariensis extracts having comparable antidiabetic activities to sitagliptin as a standard antidiabetic drug. Our findings suggested that pine needles are a good source of phenolics and diterpenoids that have possible health promoting activities in management and alleviation of diabetic conditions and Alzheimer disease.


Subject(s)
Chromatography, High Pressure Liquid/methods , Metabolome/physiology , Pinus , Tandem Mass Spectrometry/methods , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/metabolism , Diterpenes/analysis , Diterpenes/chemistry , Diterpenes/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/metabolism , Hypoglycemic Agents/analysis , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/metabolism , Metabolomics , Pinus/chemistry , Pinus/metabolism , Plant Extracts/chemistry , Protective Agents/analysis , Protective Agents/chemistry , Protective Agents/metabolism , Solid Phase Extraction/methods
6.
Saudi J Biol Sci ; 27(6): 1649-1658, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32489307

ABSTRACT

Cactaceae plant family comprises over 130 genera and 2000 species of succulent flowering plants. The genera Mammillaria and Notocactus (Parodia), which have medicinal and nutritional applications as well as aesthetic appeal, are considered to be among the major genera of the family. Several species of both genera show morphological and chemical similarities and diversities according to environmental conditions and genotypes. Here, we assessed the genetic relationships of nine species belonging to two major genera Mammillaria and Notocactus under the family Cactaceae, using two modern gene-targeting marker techniques, the Start Codon Targeted (SCoT) Polymorphism and the Conserved DNA-Derived Polymorphism (CDDP). Besides, we screened the various phytochemicals and evaluated the antioxidant activities of the nine species of cacti. Five out of the 10 SCoT and eight CDDP primers used to screen genetic variations within the nine species yielded species-specific reproducible bands. The entire 156 loci were detected, of which 107 were polymorphic, 26 were monomorphic, and 23 were unique loci. The nine species were categorized into two groups based on the dendrogram and similarity matrix. Phytochemical profiling revealed that sterols, triterpenes, flavonoids, and tannins were found in all the tested species. Additionally, two Notocactus species (N. shlosserii and N. roseoluteus) and one Mammillaria species (M. spinosissima) revealed a considerable antioxidant activity. Our results demonstrated that gene-targeting marker techniques were highly powerful tools for the classification and characterization of the nine investigated species, despite displaying high similarities at both morphological and phytochemical levels.

SELECTION OF CITATIONS
SEARCH DETAIL
...