Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 683: 108299, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32061585

ABSTRACT

BACKGROUND: ER (endoplasmic reticulum) stress leads to decreased complex I activity in cardiac mitochondria. The aim of the current study is to explore the potential mechanisms by which ER stress leads to the complex I defect. ER stress contributes to intracellular calcium overload and oxidative stress that are two key factors to induce mitochondrial dysfunction. Since oxidative stress is often accompanied by intracellular calcium overload during ER stress in vivo, the role of oxidative stress and calcium overload in mitochondrial dysfunction was studied using in vitro models. ER stress results in intracellular calcium overload that favors activation of calcium-dependent calpains. The contribution of mitochondrial calpain activation in ER stress-mediated complex I damage was studied. METHODS: Thapsigargin (THAP) was used to induce acute ER stress in H9c2 cells and C57BL/6 mice. Exogenous calcium (25 µM) and H2O2 (100 µM) were used to induce modest calcium overload and oxidative stress in isolated mitochondria. Calpain small subunit 1 (CAPNS1) is essential to maintain calpain 1 and calpain 2 (CPN1/2) activities. Deletion of CAPNS1 eliminates the activities of CPN1/2. Wild type and cardiac-specific CAPNS1 deletion mice were used to explore the role of CPN1/2 activation in calcium-induced mitochondrial damage. RESULTS: In isolated mitochondria, exogenous calcium but not H2O2 treatment led to decreased oxidative phosphorylation, supporting that calcium overload contributes a key role in the mitochondrial damage. THAP treatment of H9c2 cells decreased respiration selectively with complex I substrates. THAP treatment activated cytosolic and mitochondrial CPN1/2 in C57BL/6 mice and led to degradation of complex I subunits including NDUFS7. Calcium treatment decreased NDUFS7 content in wild type but not in CAPNS1 knockout mice. CONCLUSION: ER stress-mediated activation of mitochondria-localized CPN1/2 contributes to complex I damage by cleaving component subunits.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum Stress/drug effects , Heart Diseases/metabolism , Mitochondria/metabolism , Animals , Calpain/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Gene Deletion , Hydrogen Peroxide/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Oxidative Phosphorylation , Oxidative Stress , Phosphorylation , Rats , Thapsigargin/pharmacology
2.
J Pharmacol Exp Ther ; 369(2): 282-290, 2019 05.
Article in English | MEDLINE | ID: mdl-30846619

ABSTRACT

Transient, reversible blockade of complex I during early reperfusion after ischemia limits cardiac injury. We studied the cardioprotection of high dose of metformin in cultured cells and mouse hearts via the novel mechanism of acute downregulation of complex I. The effect of high dose of metformin on complex I activity was studied in isolated heart mitochondria and cultured H9c2 cells. Protection with metformin was evaluated in H9c2 cells at reoxygenation and at early reperfusion in isolated perfused mouse hearts and in vivo regional ischemia reperfusion. Acute, high-dose metformin treatment inhibited complex I in ischemia-damaged mitochondria and in H9c2 cells following hypoxia. Accompanying the complex I modulation, high-dose metformin at reoxygenation decreased death in H9c2 cells. Acute treatment with high-dose metformin at the end of ischemia reduced infarct size following ischemia reperfusion in vitro and in vivo, including in the AMP kinase-dead mouse. Metformin treatment during early reperfusion improved mitochondrial calcium retention capacity, indicating decreased permeability transition pore (MPTP) opening. Acute, high-dose metformin therapy decreased cardiac injury through inhibition of complex I accompanied by attenuation of MPTP opening. Moreover, in contrast to chronic metformin treatment, protection by acute, high-dose metformin is independent of AMP-activated protein kinase activation. Thus, a single, high-dose metformin treatment at reperfusion reduces cardiac injury via modulation of complex I.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Metformin/pharmacology , Myocardial Reperfusion Injury/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Cytoprotection/drug effects , Dose-Response Relationship, Drug , Enzyme Activation/drug effects , Male , Metformin/therapeutic use , Mice , Mice, Inbred C57BL , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Protein Conformation/drug effects
3.
J Biol Chem ; 292(51): 20989-20997, 2017 12 22.
Article in English | MEDLINE | ID: mdl-29046352

ABSTRACT

Dineolignans manassantin A and B from the plant Saururus cernuus are used in traditional medicine to manage a wide range of ailments such as edema, jaundice, and gonorrhea. Cell-based studies have identified several molecular target candidates of manassantin including NF-κB, MAPK, STAT3, and hypoxia-inducible factor 1α (HIF-1α). It is unclear whether or how these structurally diverse proteins or pathways mediate any of the medical benefits of manassantin in vivo Moreover, it has recently been reported that manassantin causes developmental arrest in zebrafish by inhibiting the mitochondrial complex I, but it is unknown whether manassantin inhibits mitochondrial respiration in intact mammalian cells and live animals. Here, we present direct evidence that manassantin potently and specifically inhibits the mitochondrial complex I and bioenergetic activity in mammalian systems. Manassantin had no effect on complex II- or complex IV-mediated respiration. Of note, it decreased NADH-ubiquinone reductase activity but not the activity of NADH-ferricyanide reductase. Treatment with manassantin reduced cellular ATP levels and concomitantly stimulated AMP-activated protein kinase in vitro and in vivo As an adaptive response to manassantin-induced bioenergetic deficiency, mammalian cells up-regulated aerobic glycolysis, a process mediated by AMP-activated protein kinase (AMPK) independently of HIF-1α. Together these results demonstrate a biologically important activity of manassantin in the control of complex I-mediated respiration and its profound effects on oxygen utilization, energy homeostasis, and glucose metabolism in mammalian cells.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Energy Metabolism/drug effects , Furans/pharmacology , Lignans/pharmacology , AMP-Activated Protein Kinases/metabolism , Animals , Cell Line , Enzyme Activation/drug effects , Glycolysis/drug effects , Hep G2 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxygen Consumption/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...