Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 181
Filter
1.
Article in English | MEDLINE | ID: mdl-38994626

ABSTRACT

BACKGROUND: Oral cancer poses a significant threat to public health worldwide. In addition, because many chemotherapy treatments have negative side effects, natural herbs may be beneficial for oral cancer therapy. Achyranthes aspera (AA), a potential medicinal herb, exerts various pharmacological and biochemical activities. OBJECTIVE: The present study aimed to predict the anti-oral cancer potential of AA using in silico tools and cell death by in vitro testing. METHODS: A total of fourteen bioactive constituents from AA herb were selected using phytochemical databases. The toxicity of AA herb extract was analysed through MTT assay against oral carcinoma A253 cell line. The binding activities of the phytocomponents against serine/ threonine-specific protein kinases isoforms, namely Akt1 (PDB ID: 3qkk) and Akt2 (PDB ID: 2jdo) proteins, were analysed using Discovery Studio 2021 and PyRx docking software. RESULTS: Cell viability data revealed that AA extract decreased the viability and reduced the number of live cells of the oral carcinoma A253 cell line in a dose-dependent manner. The halfmaximal concentration (IC50) value of AA was assessed as 204.74 µg/ml. Based on binding affinity, saponin C (-CDOCKER energy = -77.9862), oleanolic acid (-CDOCKER energy = - 49.4349), spinasterol (-CDOCKER energy = -38.1246), 36,47-dihydroxyhenpentacontan-4-one (-CDOCKER energy = -32.4386), and 20-hydroxyecdysone (-CDOCKER energy = -31.9138) were identified as the best compounds against Akt1, while, compounds saponin C (-CDOCKER energy = -134.412), oleanolic acid (-CDOCKER energy = -90.0846), spinasterol (-CDOCKER energy = -78.3213), 20-hydroxyecdysone (-CDOCKER energy = -80.1049), and ecdysone (- CDOCKER energy = -73.3885) were identified as Akt2 inhibitors. These top compounds fulfilled drug score values, pharmacokinetic and physicochemical characteristics, and druglikeness parameters. CONCLUSION: The present findings reveal that the lead phytomolecules of AA could be effective and developed as a prospective drug against oral cancer.

2.
World J Psychiatry ; 14(6): 767-783, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38984346

ABSTRACT

Although significant advances have been made in understanding the patho-physiology of psychiatric disorders (PDs), therapeutic advances have not been very convincing. While psychotropic medications can reduce classical symptoms in patients with PDs, their long-term use has been reported to induce or exaggerate various pre-existing metabolic abnormalities including diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). The mechanism(s) underlying these metabolic abnormalities is not clear; however, lipid/fatty acid accumulation due to enhanced de novo lipogenesis (DNL) has been shown to reduce membrane fluidity, increase oxidative stress and inflammation leading to the development of the aforementioned metabolic abnormalities. Intriguingly, emerging evidence suggest that DNL dysregulation and fatty acid accumulation could be the major mechanisms associated with the development of obesity, diabetes and NAFLD after long-term treatment with psychotropic medications in patients with PDs. In support of this, several adjunctive drugs comprising of anti-oxidants and anti-inflammatory agents, that are used in treating PDs in combination with psychotropic medications, have been shown to reduce insulin resistance and development of NAFLD. In conclusion, the above evidence suggests that DNL could be a potential pathological factor associated with various metabolic abnormalities, and a new avenue for translational research and therapeutic drug designing in PDs.

3.
Biotechnol J ; 19(6): e2400140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38896410

ABSTRACT

Artificial Intelligence (AI) technology is spearheading a new industrial revolution, which provides ample opportunities for the transformational development of traditional fermentation processes. During plasmid fermentation, traditional subjective process control leads to highly unstable plasmid yields. In this study, a multi-parameter correlation analysis was first performed to discover a dynamic metabolic balance among the oxygen uptake rate, temperature, and plasmid yield, whilst revealing the heating rate and timing as the most important optimization factor for balanced cell growth and plasmid production. Then, based on the acquired on-line parameters as well as outputs of kinetic models constructed for describing process dynamics of biomass concentration, plasmid yield, and substrate concentration, a machine learning (ML) model with Random Forest (RF) as the best machine learning algorithm was established to predict the optimal heating strategy. Finally, the highest plasmid yield and specific productivity of 1167.74 mg L-1 and 8.87 mg L-1/OD600 were achieved with the optimal heating strategy predicted by the RF model in the 50 L bioreactor, respectively, which was 71% and 21% higher than those obtained in the control cultures where a traditional one-step temperature upshift strategy was applied. In addition, this study transformed empirical fermentation process optimization into a more efficient and rational self-optimization method. The methodology employed in this study is equally applicable to predict the regulation of process dynamics for other products, thereby facilitating the potential for furthering the intelligent automation of fermentation processes.


Subject(s)
Bioreactors , Escherichia coli , Fermentation , Machine Learning , Plasmids , Plasmids/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli/growth & development , Bioreactors/microbiology , Batch Cell Culture Techniques/methods , Biomass
4.
RSC Adv ; 14(20): 14438-14451, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38694548

ABSTRACT

Supercapacitors have substantially altered the landscape of sophisticated energy storage devices with their exceptional power density along with prolonged cyclic stability. On the contrary, their energy density remains low, requiring research to compete with conventional battery storage devices. This study addresses the disparities between energy and power densities in energy storage technologies by exploring the integration of layered double hydroxides (LDH) and highly conductive materials to develop an innovative energy storage system. Four electrodes were fabricated via a hydrothermal process using NiCoCu LDH, Ag-citrate, PANI, and f-SWCNTs. The optimal electrode demonstrated exceptional electrochemical properties; at 0.5 A g-1, it possessed specific capacitances of 807 F g-1, twice as high as those of the pure sample. The constructed asymmetric supercapacitor device attained energy densities of 62.15 W h kg-1 and 22.44 W h kg-1, corresponding to power densities of 1275 W kg-1 and 11 900 W kg-1, respectively. Furthermore, it maintained 100% cyclic stability and a coulombic efficiency of 95% for 4000 charge-discharge cycles. The concept of a supercapacitor of the hybrid grade was reinforced by power law investigations, which unveiled b-values in the interval of 0.5 to 1. This research emphasizes the considerable potential of supercapacitor-grade NiCoCu LDH/Ag-citrate-PANI-f-SWCNTs nanocomposites for superior rate performance, robust cycle stability, and enhanced energy storage capacity.

5.
BMC Palliat Care ; 23(1): 112, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693518

ABSTRACT

BACKGROUND: Despite a large burden of life-limitingillness, there exists a dearth of services of palliative care in Pakistan. International guidelines have questionable applicability in Pakistan due to the socioeconomic differences. We generated a protocol describing the process of developing comprehensive palliative care guidelines and palliative care referral pathways for primary care practitioners to adopt in Pakistan. METHODS: A GRADE-ADOLOPMENT approach with modification has been employed to create guidelines for a Pakistani context. The "National Comprehensive Cancer Network Guidelines Insights: Palliative Care, Version 2.2021" was used as the source guideline. Recommendations from the source guideline were reviewed by two local palliative care specialists to either "Adopt," "Adapt" or "Exclude". The finalized recommendations were incorporated into the local palliative care guideline. Clinical diagnosis and referral pathways were made from the finalized guideline. Any gaps in management found in the pathways were filled by taking existing recommendations from other credible guidelines. RESULTS: Twenty-seven recommendations were adopted without modification. No recommendations were deemed to be adapted and 15 were excluded. The referral care pathways created were reflective of the local guideline and included elements of initial assessment, preliminary management, reassessment, and referral. 6 additional recommendations were made. CONCLUSION: The described clinical practice guidelines and primary care clinical referral pathways will aid to standardize palliative care provision in Pakistan. These can be used by other resource constrained settings to develop guidelines within their own local context.


Subject(s)
Palliative Care , Primary Health Care , Referral and Consultation , Humans , Pakistan , Palliative Care/standards , Palliative Care/methods , Referral and Consultation/standards , Primary Health Care/methods , Primary Health Care/standards , Practice Guidelines as Topic
6.
RSC Adv ; 14(20): 13837-13849, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38681836

ABSTRACT

Bimetallic metal-organic frameworks (MOFs) play a significant role in the electrocatalysis of water due to their large surface area and availability of increased numbers of pores. For the inaugural time, we examine the effectiveness of a hexamethylene tetra-amine (HMT)-induced 3D NiCo-MOF-based nanostructure as a potent bifunctional electrocatalyst with superior performance for overall water splitting in alkaline environments. The structural, morphological, and electrochemical properties of the as-synthesized bifunctional catalyst were examined thoroughly before analyzing its behavior towards electrochemical water splitting. The HMT-based NiCo-MOF demonstrated small overpotential values of 274 mV and 330 mV in reaching a maximum current density of 30 mA cm-2 for hydrogen and oxygen evolution mechanisms, respectively. The Tafel parameter also showed favorable HER/OER reaction kinetics, with slopes of 78 mV dec-1 and 86 mV dec-1 determined during the electrochemical evaluation. Remarkably, the NiCo-HMT electrode exhibited a double-layer capacitance of 4 mF cm-2 for hydrogen evolution and 23 mF cm-2 for oxygen evolution, while maintaining remarkable stability even after continuous operation for 20 hours. This research offers a valuable blueprint for implementing a cost-effective and durable MOF-based bifunctional catalytic system that has proven to be effective for complete water splitting. Decomposition of water under higher current densities is crucial for effective long-term generation and commercial consumption of hydrogen.

7.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581087

ABSTRACT

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Subject(s)
Phenylethyl Alcohol , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/metabolism , Phenylethyl Alcohol/metabolism , Multiomics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Biosynthetic Pathways , Fermentation
8.
Chem Asian J ; : e202400070, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581101

ABSTRACT

Hydrogen has been regarded as a promising alternative to traditional fossil fuels, presenting itself as a viable and environmentally friendly energy choice. The design and fabrication of highly efficient hydrogen storage materials is crucial to the wide utilization of hydrogen-based technologies. Magnesium-based nanocrystalline materials have received significant interest in the field of hydrogen storage due to their remarkable hydrogen storage capabilities and release efficiency. This review emphasizes on the most useful techniques including vapor deposition, sol-gel synthesis, electrochemical deposition, magnetron sputtering, and template-assisted approaches used for the fabrication of Magnesium-based nanocrystalline hydrogen storage materials (Mg-NHSMs), stressing their advantages, limitations, and recent advancements. These cutting-edge techniques demonstrate their significance in offering useful insights into the performance of Mg-NHSMs. Further, this review describes various applications of Mg-NHSMs. In addition, this review highlights the conclusion and future perspectives on the improvement of magnesium based nanocrystalline materials for efficient hydrogen storage.

9.
Microb Cell Fact ; 23(1): 88, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519954

ABSTRACT

BACKGROUND: The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS: This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS: This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.


Subject(s)
Amino Acids, Diamino , Halomonas , Sodium Chloride/pharmacology , Sodium Chloride/metabolism , Halomonas/genetics , Halomonas/metabolism , Osmotic Pressure , Gene Expression Profiling , Peroxidases/metabolism
10.
BMC Endocr Disord ; 24(1): 41, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509509

ABSTRACT

INTRODUCTION: The prevalence of hyperthyroidism in Pakistan is 2.9%, which is two times higher than in the United States. Most high-quality hyperthyroidism clinical practice guidelines (CPGs) used internationally originate from high-income countries in the West. Local CPGs in Pakistan are not backed by transparent methodologies. We aimed to produce comprehensive, high-quality CPGs for the management of hyperthyroidism in Pakistan. METHODS: We employed the GRADE-ADOLOPMENT approach utilizing the 2016 American Thyroid Association Guidelines for Diagnosis and Management of Hyperthyroidism and Other Causes of Thyrotoxicosis as the source CPG. Recommendations from the source guideline were either adopted as is, excluded, or adapted according to our local context. RESULTS: The source guideline included a total of 124 recommendations, out of which 71 were adopted and 49 were excluded. 4 recommendations were carried forward for adaptation via the ETD process, with modifications being made to 2 of these. The first addressed the need for liver function tests (LFTs) amongst patients experiencing symptoms of hepatotoxicity while being treated with anti-thyroid drugs (ATDs). The second pertained to thyroid status testing post-treatment by radioactive iodine (RAI) therapy for Graves' Disease (GD). Both adaptations centered around the judicious use of laboratory investigations to reduce costs of hyperthyroidism management. CONCLUSION: Our newly developed hyperthyroidism CPGs for Pakistan contain two context-specific modifications that prioritize patients' finances during the course of hyperthyroidism management and to limit the overuse of laboratory testing in a resource-constrained setting. Future research must investigate the cost-effectiveness and risk-benefit ratio of these modified recommendations.


Subject(s)
Graves Disease , Hyperthyroidism , Thyroid Neoplasms , Humans , Pakistan/epidemiology , Iodine Radioisotopes/therapeutic use , Thyroid Neoplasms/drug therapy , Hyperthyroidism/diagnosis , Hyperthyroidism/epidemiology , Hyperthyroidism/therapy , Graves Disease/diagnosis , Graves Disease/epidemiology , Graves Disease/therapy
11.
Lancet Reg Health Southeast Asia ; 23: 100387, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38486880

ABSTRACT

Psychiatric disorders are highly prevalent in Pakistan and burdens the scarce number of psychiatrists present in the country. The establishment of evidence-based clinical practice guidelines (EBCPGs) and primary-care referral pathways within the local context is imperative to make the process efficient. In this Health Policy, we aimed to develop EBCPGs and primary-care referral pathways that are specific to Pakistan's primary-care setting, with the aim of facilitating the management of psychiatric conditions. Ten EBCPGs were created through the GRADE-ADOLOPMENT process; two recommendations were adopted with minor changes, 43 were excluded, and all others were adopted without any changes. Ten primary-care referral pathways for managing ten psychiatric disorders were created and 23 recommendations were added which will help to bridge the gap in care provision. These psychiatric referral pathways and EBCPGs will bring Pakistan's healthcare system a step closer to achieving optimal health outcomes for patients.

12.
Biotechnol J ; 19(3): e2300683, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38479986

ABSTRACT

Acremonium chrysogenum is the major industrial producer of cephalosporin C (CPC), which is used as raw material for the production of significant cephalosporin antibiotics. Due to the lack of diverse promoter elements, the development of metabolic engineering transformation is relatively slow, resulting in a limited improvement on CPC production. In this study, based on the analysis of the transcriptome profile, 27 candidate promoters were selected to drive the expression of the reporter genes. The promoter activities of this library ranged from 0.0075 to 101 times of the control promoter PAngpdA . Simultaneously, a rapid screening method for potential bidirectional promoters was developed and 4 strong bidirectional promoters from 27 candidate options were identified and validated. Finally, the Golden Gate method was employed to combine promoter modules from the library with various target genes. Through a mixed transformation and screening process, high-yielding strains AG-6, AG-18, and AG-41 were identified, exhibiting an increase in CPC production of 30%, 35%, and 29%, respectively, compared to the control strain Ac-∆axl2:: eGFP. Therefore, the utilization of this promoter library offers a broader range of synthetic biology toolkits for the genetic engineering transformation of A. chrysogenum, thus establishing a solid foundation for the precise regulation of gene expression.


Subject(s)
Acremonium , Cephalosporins , Cephalosporins/metabolism , Transcriptome , Acremonium/genetics , Acremonium/metabolism , Metabolic Engineering
13.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473957

ABSTRACT

Chlorogenic acids (CGAs) are bioactive compounds widely used in the food, pharmaceutical, and cosmetic industries. Carthamus tinctorius is an important economic crop, and its suspension cells are rich in CGAs. However, little is known about the biosynthesis and regulation of CGAs in Carthamus tinctorius cells. This study first elucidated the regulatory mechanism of CGA biosynthesis in methyl jasmonate (MeJA)-treated Carthamus tinctorius cells and the role of the MeJA-responsive hydroxycinnamoyl transferase (HCT) gene in enhancing their CGA accumulation. Firstly, temporal changes in intracellular metabolites showed that MeJA increased the intracellular CGA content up to 1.61-fold to 100.23 mg·g-1. Meanwhile, 31 primary metabolites showed significant differences, with 6 precursors related to increasing CGA biosynthesis. Secondly, the transcriptome data revealed 3637 new genes previously unannotated in the Carthamus tinctorius genome and 3653 differentially expressed genes. The genes involved in the plant signaling pathway and the biosynthesis of CGAs and their precursors showed a general up-regulation, especially the HCT gene family, which ultimately promoted CGA biosynthesis. Thirdly, the expression of a newly annotated and MeJA-responsive HCT gene (CtHCT, CtNewGene_3476) was demonstrated to be positively correlated with CGA accumulation in the cells, and transient overexpression of CtHCT enhanced CGA accumulation in tobacco. Finally, in vitro catalysis kinetics and molecular docking simulations revealed the ability and mechanism of the CtHCT protein to bind to various substrates and catalyze the formation of four hydroxycinnamic esters, including CGAs. These findings strengthened our understanding of the regulatory mechanism of CGA biosynthesis, thereby providing theoretical support for the efficient production of CGAs.


Subject(s)
Acetates , Carthamus tinctorius , Cyclopentanes , Oxylipins , Transferases , Transferases/metabolism , Chlorogenic Acid/metabolism , Carthamus tinctorius/genetics , Molecular Docking Simulation , Transcriptome , Nucleotidyltransferases/metabolism , Gene Expression Regulation, Plant
14.
Gels ; 10(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38534622

ABSTRACT

Drug delivery techniques based on polymers have been investigated for their potential to improve drug solubility, reduce systemic side effects, and controlled and targeted administration at infection site. In this study, we developed a co-polymeric hydrogel composed of graphene sheets (GNS), polyvinyl alcohol (PVA), and chitosan (CS) that is loaded with methotrexate (MTX) for in vitro liver cancer treatment. Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM) was employed to check the structural properties and surface morphology. Moreover, tests were conducted on the cytotoxicity, hemolytic activity, release kinetics, swelling behaviour and degradation of hydrogels. A controlled release of drug from hydrogel in PBS at pH 7.4 was examined using release kinetics. Maximal drug release in six hours was 97.34%. The prepared hydrogels did not encourage the HepG2 growth and were non-hemolytic. The current study highlights the potential of GNS-based hydrogel loaded with MTX as an encouraging therapy for hepatocellular carcinoma. HepG2 cell viability of MTX-loaded CS-PVA-GNS hydrogel was (IC50 5.87 µg/200 mL) in comparison to free MTX (IC50 5.03 µg/200 mL). These outcomes recommend that hydrogels with GNS ensure improved drug delivery in cancer microenvironment while lessening adverse consequences on healthy cells.

15.
Environ Res ; 245: 118050, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38163542

ABSTRACT

Nano zero-valent (nZVI) based composite have been widely utilized in environmental remediation. However, the rapid agglomeration and quick deactivation of nZVI limited its application on large scale. In this work, CaCO3 supported nZVI-Ni catalyst, namely nZVI-Ni@CaCO3 was prepared and used for the efficient removal of trichloroethylene (TCE) in PS oxidation process. The successful disbursement of nZVI-Ni on CaCO3 support material not only increased the surface area of nZVI-Ni@CaCO3 (69.45 m2/g) with respect to CaCO3 (5.92 m2/g) and bare nZVI (13.29 m2/g) but also improved the catalytic activity. XRD, XPS and FTIR analysis confirmed the successful formation of nZVI-Ni@CaCO3 nanoparticles. The nZVI-Ni@CaCO3 nanoparticles combined with PS had achieved complete removal of TCE (99.8%) with dosage of 36 mg/L and 1.34 mM respectively. These results showed that the use of CaCO3 as support material for nZVI-Ni could have significant influence on contaminant removal process. Scavenging and EPR tests validated the existence of SO4•-, OH• and O2•- radicals in PS/nZVI-Ni@CaCO3 system and highlighted the dominant role of SO4•- radicals in TCE removal process. HCO3- ions and humic acid have shown adverse effect on TCE removal due to radical scavenging and buffering effect. Owing to improved catalytic activity and easy preparation, the nZVI-Ni@CaCO3 nanoparticles could be served as an alternative strategy for environmental remediation.


Subject(s)
Nanocomposites , Trichloroethylene , Water Pollutants, Chemical , Nickel , Iron , Water Pollutants, Chemical/analysis
16.
RSC Adv ; 14(5): 3178-3185, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38249669

ABSTRACT

Ab initio calculations have been used to investigate lead-free double-perovskites (DPs) X2AgBiY6 (X = NH4, PH4, AsH4, SbH4 and Y = Cl, Br) for solar-cell-based energy sources. The most recent and improved Becke-Johnson potential (TB-mBJ) has been proposed for the computation of optoelectronic properties. Theoretical and calculated values of the lattice constants obtained by applying the Wu-Cohen generalized gradient approximation (WC-GGA) were found to be in good agreement. The computed bandgap values of (NH4)2AgBiBr6 (1.574 eV) and (SbH4)2AgBiBr6 (1.440 eV) revealed their indirect character, demonstrating that they are suitable contenders for visible light solar-cell (SC) technology. Properties like the refractive index, light absorption, reflection, and dielectric constant are all explained in terms of the optical ranges. Within the wavelength range of 620-310 nm, the maximum absorption band has been identified. Additionally, we discover that all chemicals investigated herein have photocatalytic capabilities that can be used to efficiently produce hydrogen at cheap cost using solar water splitting by photocatalysts. In addition, the stability of the compounds was examined using the calculation of mechanical properties.

17.
Stem Cell Res Ther ; 15(1): 12, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38185703

ABSTRACT

BACKGROUND: Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS: We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS: The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS: This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.


Subject(s)
Lysosomes , Obesity , Humans , Obesity/therapy , Phagocytosis , Adiposity , Antioxidants , Stem Cells
18.
RSC Adv ; 14(3): 2102-2115, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38196904

ABSTRACT

Metal-organic frameworks (MOFs) are one of the most sought-after materials in the domain of supercapacitors and can be tailored to accommodate diverse compositions, making them amenable to facile functionalization. However, their intrinsic specific capacitance as well as energy density is minimal, which hinders their usage for advanced energy storage applications. Therefore, herein, we have prepared six electrodes, i.e., Ni-Co-Mn MOFs, polyaniline (PANI), and reduced graphene oxide (rGO) along with their novel nanocomposites, i.e., C1, C2, and C3, comprising MOFs : PANI : rGO in a mass ratio of 100 : 1 : 0.5, 100 : 1 : 1, and 100 : 1 : 10, respectively. The polyaniline conducting polymer and rGO enabled efficient electron transport, enhanced charge storage processes, substantial surface area facilitating higher loading of active materials, promoting electrochemical reactions, and ultimately enhanced nanocomposite system performance. As a result, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques confirmed the successful synthesis and revealed distinct morphological features of the materials. Following electrochemical testing, it was observed that composition C2 exhibited the highest performance, demonstrating a groundbreaking specific capacitance of 1007 F g-1 at 1 A g-1. The device showed a good energy density of 25.11 W h kg-1 and a power density of 860 W kg-1. Remarkably, the device demonstrated a capacity retention of 115% after 1500 cycles, which is a clear indication of the wettability factor, according to the literature. The power law indicated b-values in a range of 0.58-0.64, verifying the hybrid-type behavior of supercapacitors.

19.
J Chem Phys ; 160(3)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38230950

ABSTRACT

The semiconductor/insulator blends for organic field-effect transistors are a potential solution to improve the charge transport in the active layer by inducing phase separation in the blends. However, the technique is less investigated for long-chain conducting polymers such as Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)] (DPPDTT), and lateral phase separation is generally reported due to the instability during solvent evaporation, which results in degraded device performance. Herein, we report how to tailor the dominant mechanism of phase separation in such blends and the molecular assembly of the polymer. For DPPDTT/PMMA blends, we found that for higher DPPDTT concentrations (more than 75%) where the vertical phase separation mechanism is dominant, PMMA assisted in the self-assembly of DPPDTT to form nanowires and micro-transport channels on top of PMMA. The formation of nanowires yielded 13 times higher mobility as compared to pristine devices. For blend ratios with DPPDTT ≤ 50%, both the competing mechanisms, vertical and lateral phase separation, are taking place. It resulted in somewhat lower charge carrier mobilities. Hence, our results show that by systematic tuning of the blend ratio, PMMA can act as an excellent binding material in long-chain polymers such as DPPDTT and produce vertically stratified and aligned structures to ensure high mobility devices.

20.
J Pak Med Assoc ; 74(1): 62-66, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38219167

ABSTRACT

OBJECTIVE: To measure and compare the serum levels of resistin and lipid profile parameters in primigravida females with and without preeclampsia. Methods: The analytical cross-sectional study was conducted at the Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan, from 2018 to 2020, and comprised primigravida females having gestational age 30-36 weeks. Those with preeclampsia constituted group 1, while normotensive females constituted group 2. All the participants were subjected to detailed history and general physical examination. Serum resistin levels were measured by enzymelinked immunosorbent assay, and lipid profile parameters were measured using the colorimetric method. Data was analysed using SPSS 20. RESULTS: Of the 80 women, 40(50%) were in group 1 with mean age 23.07±2.10 years and mean gestation age 33.45±2.30 weeks. There were 40(50%) women in group 2 with mean age 23.02±2.11 years and mean gestational age 34.45±1.75 weeks. Mean serum resistin was significantly higher in group 1 compared to group 2 (p<0.02). Mean levels of lipid parameters were significantly different between the groups (p˂0.05). Conclusion: Preeclampsia was found to be associated with higher levels of resistin and lipid parameters compared to normal pregnancy.


Subject(s)
Pre-Eclampsia , Adult , Female , Humans , Pregnancy , Young Adult , Blood Pressure , Cross-Sectional Studies , Lipids , Resistin
SELECTION OF CITATIONS
SEARCH DETAIL
...