Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37947567

ABSTRACT

Radon in dwellings is recognized as the primary source of natural radiation exposure to members of the public. In the West Rand District and Soweto in the Gauteng Province (South Africa), indoor radon (222Rn) mapping was carried out to assess the exposure levels of radon in dwellings around gold and uranium mining tailings dams. This study was conducted predominately during warm and cold seasons, using the solid-state nuclear track detectors. In summer months, the indoor radon levels measured in all areas ranged from below the lower limit of detection to 71 Bq/m3, with a mean value of 29 Bq/m3, whereas in winter, the levels ranged between 11 and 124 Bq/m3, with a mean value of 46 Bq/m3. Higher indoor radon levels are found in colder months (winter season) than warmer months (summer season). However, no dwellings with indoor radon levels that exceed the WHO (2009) recommended reference level of 100 Bq/m3 were found, except for one that was constructed directly on soil mixed with tailings material. It is recommended that residents should keep their indoor radon levels low through continuous ventilation so as to minimize the buildup of radon and the likelihood of increased health hazards associated with radon exposure.


Subject(s)
Air Pollution, Indoor , Radiation Monitoring , Radon , Radon/analysis , Air Pollution, Indoor/analysis , Gold , South Africa , Housing
2.
Environ Monit Assess ; 194(2): 112, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35050408

ABSTRACT

Naturally occurring radionuclides and metals have adverse human health impacts when they occur at higher activity and concentration above the threshold value, respectively, in the water supply system. This study aimed to establish the baseline radionuclide and metal content in rocks, soils, and water in the Thyspunt area of the Eastern Cape Province, South Africa, which is selected as a potential site for the development of a nuclear power plant. Extensive sampling of rocks, soils, groundwater, and surface water was conducted in the area. The employed methods of sample analyses include ICP-MS, gamma-ray spectrometery (RS 230), and accelerator mass spectrometry. The results indicate that the Ceres Subgroup shale and the Skurwerburg formation quartzite of the Table Mountain Group (TMG) contain the highest activity of most radionuclides, including 238U, 235U, 234U, 226Ra, 232Th, and 210Pb; these are linked to the natural geochemistry of the rocks that have been facilitated by the low-grade metamorphism to which the local geology was subjected. The metamorphism-related radionuclide enrichment is also apparent in the soils and groundwater associated with these rocks. The activity of the radiotoxic and carcinogenic uranium (238U and 235U) and radium (226Ra and 224Ra) isotopes in water was found to be well above the WHO guideline of 0.03 and 1 Bq/L, respectively. The exposure dose rate was the highest in the Ceres Subgroup shales (185.7 nS/h), and this is linked to the elevated natural radioactivity in the rocks. The estimate of the ingestion-related effective dose indicates high doses associated with the uranium and radium isotopes, thus signifying the potential adverse impact on human health associated with the ingestion of the widely used groundwater in the area.


Subject(s)
Radiation Monitoring , Radioactivity , Water Pollutants, Radioactive , Humans , Radioisotopes , South Africa , Water Pollutants, Radioactive/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...