Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(8): e67290, 2013.
Article in English | MEDLINE | ID: mdl-23967047

ABSTRACT

Insect voltage-gated sodium (Nav) channels are formed by a well-known pore-forming α-subunit encoded by para-like gene and ancillary subunits related to TipE from the mutation "temperature-induced-paralysis locus E." The role of these ancillary subunits in the modulation of biophysical and pharmacological properties of Na(+) currents are not enough documented. The unique neuronal ancillary subunit TipE-homologous protein 1 of Drosophila melanogaster (DmTEH1) strongly enhances the expression of insect Nav channels when heterologously expressed in Xenopus oocytes. Here we report the cloning and functional expression of two neuronal DmTEH1-homologs of the cockroach, Periplaneta americana, PaTEH1A and PaTEH1B, encoded by a single bicistronic gene. In PaTEH1B, the second exon encoding the last 11-amino-acid residues of PaTEH1A is shifted to 3'UTR by the retention of a 96-bp intron-containing coding-message, thus generating a new C-terminal end. We investigated the gating and pharmacological properties of the Drosophila Nav channel variant (DmNav1-1) co-expressed with DmTEH1, PaTEH1A, PaTEH1B or a truncated mutant PaTEH1Δ(270-280) in Xenopus oocytes. PaTEH1B caused a 2.2-fold current density decrease, concomitant with an equivalent α-subunit incorporation decrease in the plasma membrane, compared to PaTEH1A and PaTEH1Δ(270-280). PaTEH1B positively shifted the voltage-dependences of activation and slow inactivation of DmNav1-1 channels to more positive potentials compared to PaTEH1A, suggesting that the C-terminal end of both proteins may influence the function of the voltage-sensor and the pore of Nav channel. Interestingly, our findings showed that the sensitivity of DmNav1-1 channels to lidocaine and to the pyrazoline-type insecticide metabolite DCJW depends on associated TEH1-like subunits. In conclusion, our work demonstrates for the first time that density, gating and pharmacological properties of Nav channels expressed in Xenopus oocytes can be modulated by an intron retention process in the transcription of the neuronal TEH1-like ancillary subunits of P. americana.


Subject(s)
Insecta/genetics , Introns , Protein Subunits , RNA, Messenger/genetics , Voltage-Gated Sodium Channels/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Complementary , Insecta/drug effects , Insecta/metabolism , Male , Molecular Sequence Data , Oocytes/metabolism , Organ Specificity/genetics , RNA, Messenger/chemistry , Sequence Alignment , Sodium/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism , Xenopus
2.
J Pharmacol Exp Ther ; 333(1): 264-72, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20056780

ABSTRACT

Decarbomethoxylated JW062 (DCJW), the active component of the oxadiazine insecticide (S)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-(trifluoromethoxy)phenyl] amino]carbonyl] indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylate (DPX-JW062) (indoxacarb), was tested on 2 inward voltage-dependent sodium currents (named INa1 and INa2) expressed in short-term cultured dorsal unpaired median neurons of the cockroach Periplaneta americana. Under whole-cell voltage-clamp conditions, application of DCJW resulted in a biphasic dose-dependent inhibition of the global sodium current amplitude illustrating the differing sensitivity of sodium channels to DCJW. INa2 was less sensitive to DCJW [half-maximal inhibitory concentration (IC(50)) = 1.6 microM] compared with INa1 (IC(50) = 1.7 nM). Although a previous study demonstrated that INa1 was regulated by the cAMP/protein kinase A cascade, we showed that INa2 was mainly regulated in an opposite way by the activation of calcium-calmodulin-dependent protein phosphatase 2B (PP2B) and calcium-calmodulin-dependent protein kinase II (CaM-kinase II). Furthermore, we demonstrated that activation of CaM-kinase II by intracellular calcium via the calcium-calmodulin complex affected the sensitivity of INa2 channels to DCJW. By increasing the intracellular calcium concentration and/or using 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) (a calcium chelator), N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) (a calmodulin inhibitor), cyclosporine A (a PP2B inhibitor), and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) (a CaM-kinase II inhibitor), we revealed that activation of CaM-kinase II was involved in the modulation of the voltage dependence of steady-state inactivation and that the CaM-kinase II pathway activated by elevation of the intracellular calcium concentration might render INa2 channels approximately 3000-fold more sensitive to DCJW. These results indicated that manipulating specific intracellular signaling pathways involved in the regulation of sodium channels might have fundamental consequences for the sensitivity of insects to insecticides. This finding reveals an exciting research area that could lead to improvement in the efficiency of insecticides.


Subject(s)
Insecticides/pharmacology , Neurons/drug effects , Oxazines/pharmacology , Sodium Channels/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Ganglia, Invertebrate/cytology , Ganglia, Invertebrate/drug effects , Ganglia, Invertebrate/physiology , In Vitro Techniques , Ion Channel Gating , Male , Neurons/physiology , Patch-Clamp Techniques , Periplaneta , Phosphorylation , Signal Transduction
3.
Insect Biochem Mol Biol ; 39(11): 814-23, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19800971

ABSTRACT

Voltage-gated sodium channels (Na(v) channels) belong to a superfamily of ion channels which play an essential role in membrane excitability. Only one gene encoding Na(v) channels has been characterized so far in insects. Here, we have cloned one full-length cDNA encoding a conventional insect Na(v) channel (PaNa(v)1) and two full-length cDNAs encoding putative insect Na(v) channels (PaFPC1 and PaFPC2) in Periplaneta americana, a model insect for neurophysiological studies. The ORFs of PaFPC1 and PaFPC2 contained 4662 bp and encoded 1553 amino acid residues, and the ORF of PaNa(v)1 contained 6153 bp and encoded 2051 amino acid residues. PaFPC1 and PaFPC2 are two isoforms, which differ by eight single amino acid substitutions. PaFPC1 shares 37.5-55% protein identities with known insect Na(v) channels, while PaNa(v)1 shares 70-97.5% protein identities with these latter. Both PaFPC1 and PaFPC2 possess the molecular hallmarks of Na(v) channels except the motif involved in fast inactivation. Contrary to PaNa(v)1 transcripts which are expressed mainly in the central nervous system, those ones of PaFPC are also expressed in non-neuronal tissues (muscles, gut and mushroom-shaped accessory glands). A detailed phylogenetic analysis confirmed that PaNa(v)1 and PaFPC are evolutionarily closely related to insect Na(v) channel genes.


Subject(s)
Cockroaches/genetics , Gene Duplication , Insect Proteins/genetics , Sodium Channels/genetics , Amino Acid Sequence , Animals , Cockroaches/chemistry , Cockroaches/metabolism , Evolution, Molecular , Insect Proteins/chemistry , Insect Proteins/metabolism , Invertebrates/classification , Invertebrates/genetics , Molecular Sequence Data , Phylogeny , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Homology, Amino Acid , Sodium Channels/chemistry , Sodium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...