Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 274(42): 29655-65, 1999 Oct 15.
Article in English | MEDLINE | ID: mdl-10514435

ABSTRACT

Metallothioneins are small, cysteine-rich proteins that function in metal detoxification and homeostasis. Metallothionein transcription is controlled by cell-specific factors, as well as developmentally modulated and metal-responsive pathways. By using the nematode Caenorhabditis elegans as a model system, the mechanism that controls cell-specific metallothionein transcription in vivo was investigated. The inducible expression of the C. elegans metallothionein genes, mtl-1 and mtl-2, occurs exclusively in intestinal cells. Sequence comparisons of these genes with other C. elegans intestinal cell-specific genes identified multiple repeats of GATA transcription factor-binding sites (i.e. GATA elements). In vivo deletion and site-directed mutation analyses confirm that one GATA element in mtl-1 and two in mtl-2 are required for transcription. Electrophoretic mobility shift assays show that the C. elegans GATA transcription factor ELT-2 specifically binds to these elements. Ectopic expression of ELT-2 in non-intestinal cells of C. elegans activates mtl-2 transcription in these cells. Likewise, mtl-2 is not expressed in nematodes in which elt-2 has been disrupted. These results indicate that cell-specific transcription of the C. elegans metallothionein genes is regulated by the binding of ELT-2 to GATA elements in these promoters. Furthermore, a model is proposed where ELT-2 constitutively activates metallothionein expression; however, a second metal-responsive factor prevents transcription in the absence of metals.


Subject(s)
Caenorhabditis elegans/genetics , Gene Expression Regulation , Metallothionein/genetics , Transcription Factors/metabolism , Transcription, Genetic , Animals , Base Sequence , DNA Primers , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL
...