Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Waste Manag ; 125: 122-131, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33684663

ABSTRACT

This paper analyzes the fate of 71 priority and emerging organic contaminants all along the treatment trains of sewage sludge treatment facilities in Paris including dewatering by centrifugation, thermal drying and anaerobic digestion. It aimed at proposing and applying a mass balances calculation methodology to each process and pollutant. This data validation strategy demonstrated the complexity to perform representative inlet/outlet sampling and analysis campaigns at industrial scales regarding organic compounds and to propose options to overcome this issue. Centrifugation and drying processes only implied physical mechanisms as phase separation and water elimination. Hence, correct mass balance were expected observed for organic contaminants if sampling and analysis campaigns were representative. This was the case for hydrophobic and neutral compounds. For the other more hydrophilic and charged compounds, the mass balances were scarcely correct. Thus, the conventional sampling and analytical practices used with sludge should be questioned and adapted to better take into account the high heterogeneity of sludge and the evolution of matrix effect within sludge treatment processes on micropollutant determination. For the biological anaerobic digestion process where degradations can occur and removals can be observed, the mass balances were deeply interpreted for 60 contaminants. This process contributed to the elimination above 70% of 21 detected compounds including 16 pharmaceuticals, 2 phthalates, 2 hormones and 1 perfluorinated compound. Removals of domperidone, propranolol, escitalopram, lidocaine, verapamil and cefoperazone under this condition were reported for the first time.


Subject(s)
Environmental Pollutants , Sewage , Desiccation , Paris , Waste Disposal, Fluid
2.
Sci Total Environ ; 599-600: 883-890, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28501012

ABSTRACT

Despite the importance of domestic wastewater, the contribution of greywater to both alkylphenol and phthalate pollution is not yet well documented. Likewise, the detailed emissions of phthalates and alkylphenols by greywater have been insufficiently studied, this work aims to fill this gap. The levels of four phthalates (DEP, DnBP, BBP and DEHP) and two alkylphenols (nonylphenol isomers and octylphenol) were quantified in six different types of greywater, namely that from washing machines, manual dishwashing, dishwashers, bathroom water (from showers and sinks) and floor cleaning. This paper presents the methodology used to characterize all sources of greywater and provides their levels of contamination. The highest concentrations were found in greywater produced by the washing machine and floor cleaning, while washing machine and shower greywater have the highest phthalate and alkylphenol loads because of the volume associated with these two sources of greywater.

3.
Waste Manag ; 59: 379-393, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27847230

ABSTRACT

This article provides data on the contamination of different kinds of sludge (raw, centrifuged, digested, thermally dried sludge and sludge cake) from Paris conurbation by 71 various pollutants including pharmaceutical products (PHPs), hormones, perfluorinated acids (PFAs), linear alkylbenzene sulfonate (LAS), alkylphenols (APs), phthalates (PAEs), polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls (PCBs). Very high contents of LAS (0.1-10g/kg dry matter - DM) compared to other compounds were found in all types of sludge followed by DEHP (10-100mg/kg DM) and fluoroquinolones (1-100mg/kg DM). APs were measured at intermediary contents in Parisian sludge, lying in the 2-20mg/kg DM range. Finally, hormones, PAHs, PCBs, PAEs, PFAs and the remaining PHPs were all found at contents lower than 1mg/kg DM. For most compounds (PHPs, PFOS, DEHP, PAHs), no significant differences in the micropollutant contents were found for similar types of sludge from different WWTP in Paris, highlighting the homogeneity of sludge contamination in downstream Paris catchment. The variability of concentration is rather high (coefficient of variation >100%) for several PHPs, PFAs or PCBs while it is moderate (<100%) or low (<50%) for fluoroquinolones, hormones, PAHs, APs or LAS. In addition, digestion seems to have a buffer effect as variabilities are lower in digested sludge for PHPs, PFAs, APs and PCBs. During sludge treatment (centrifugation, digestion, thermal drying, sludge conditioning+press filtration), the hormones, LAS, APs, PAHs, DEHP and PCBs concentrations increased, while those of PHPs and PFAs decreased. In the case of digestion, the increase of content can be explained by no pollutant removal or a lower removal than DM removal (concentration phenomenon) whereas the decrease underlines that the compound is more removed than the DM. In any case, these concentration variations presuppose the mechanisms of dissipation that could be attributed to volatilization, biotic or abiotic transformation (complete or with metabolites production), bound residues formation. In addition, data on sludge liquors - centrifuged (CW) and condensed (TDW) waters - from respectively centrifugation and thermal drying were collected. Several hormones, PHPs, PFAs, LAS, PAEs, APs, PCBs and PAHs were quantified in CW and TDW, displaying a transfer through the water removal. The concentrations observed are rather comparable to those found in wastewater.


Subject(s)
Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Alkanesulfonic Acids/chemistry , Desiccation , Hormones/analysis , Paris , Pharmaceutical Preparations/analysis , Sewage/chemistry , Temperature , Water Purification/methods
4.
Sci Total Environ ; 542(Pt A): 983-96, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26571333

ABSTRACT

Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (µGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with µCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in µGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a µGAC retention time (SRT) of 90-100 days. The µGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the µGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for µGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92-97%), carbamazepine (80-94%), ciprofloxacin (75-95%), diclofenac (71-97%), oxazepam (74-91%) or sulfamethoxazole (56-83%). In addition, alkylphenols, artificial sweeteners, benzotriazole, bisphenol A, personal care products (triclocarban and parabens) and pesticides have removals lying in the 50 ->90% range. Overall, the fluidized bed of µGAC allows obtaining performances comparable to PAC at the same activated carbon dose. Indeed, the average removal of the 13 PPHs found at a high occurrence (>75%) in WWTP discharges is similar at 20 g/m(3) of µGAC (78-89%) and PAC (85-93%). In addition, this recycled µGAC operation leads to several operational advantages (no FeCl3, reactivable, higher SRT, higher treated flow) and has a stronger impact on the overall wastewater quality compared to PAC.


Subject(s)
Charcoal/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Biological Oxygen Demand Analysis , Paris
5.
Sci Total Environ ; 541: 1355-1363, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26479909

ABSTRACT

Persistent organic pollutants (POPs) were extensively produced and used throughout the last century. In the early 1980s, a rising concern on the environmental impact of these chemicals has led to the establishment of regulations and changes of use including bans. Long term monitoring of the environmental impacts of these emissions and regulations is a challenge because regular monitoring was not mandatory at the beginning of the first emissions. Moreover, the analytical methods have been strongly improved over the decades. To overcome the lack of monitoring and accurate data, sediment cores are powerful tools to construct contamination records. In this study, a high resolution record was constructed for four POPs families (13 polycyclic aromatic hydrocarbons (PAHs), 15 polychlorinated biphenyls (PCBs), 3 alkylphenols (APs) and 8 polybromodiphenyl ethers (PBDEs)) to establish their historical trends in a long-term urbanized and industrialized environment: the Seine River basin, France. These specific families were selected because they had different sources, uses and histories. The results showed concentrations up to 90 mg/kg for ∑PAHs, 2.3mg/kg for ∑PCB, 1.2mg/kg for ∑APs and 0.06 mg/kg for ∑PBDE. The vertical distribution profiles were different from one family to another and presented a good correlation with uses (e.g. transition from coal to natural gas for PAHs), and regulation implementation (e.g., AP ban after "OSPAR Convention" in 1992). The study of compounds distribution provided original information on sources, e.g. temporal variations in PAH uses. This study demonstrates the usefulness and accuracy of sedimentary archives in floodplain to assess the fate of POPs through time in continental hydrosystems. These first results give a comprehensive overview of the contamination in the Seine River basin downstream of Paris Megacity. They were in good agreement with previous studies dedicated to European areas and highlighted specificities of this basin that were not reported before.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Hazardous Substances , Paris , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Urbanization
6.
Water Res ; 72: 315-30, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25466636

ABSTRACT

The efficacy of a fluidized powdered activated carbon (PAC) pilot (CarboPlus(®)) was studied in both nominal (total nitrification + post denitrification) and degraded (partial nitrification + no denitrification) configuration of the Seine Centre WWTP (Colombes, France). In addition to conventional wastewater parameters 54 pharmaceuticals and hormones (PhPHs) and 59 other emerging pollutants were monitored in influents and effluents of the pilot. Thus, the impacts of the WWTP configuration, the process operation and the physico-chemical properties of the studied compounds were assessed in this article. Among the 26 PhPHs quantified in nominal WWTP configuration influents, 8 have high dissolved concentrations (>100 ng/L), 11 have an intermediary concentration (10-100 ng/L) and 7 are quantified below 10 ng/L. Sulfamethoxazole is predominant (about 30% of the sum of the PhPHs). Overall, 6 PhPHs are poorly to moderately removed (<60%), such as ibuprofen, paracetamol or estrone, while 9 are very well removed (>80%), i.e. beta blockers, carbamazepine or trimethoprim, and 11 are well eliminated (60-80%), i.e. diclofenac, naproxen or sulfamethoxazole. In degraded WWTP configuration, higher levels of organic matter and higher concentrations of most pollutants are observed. Consequently, most PhPHs are substantially less removed in percentages but the removed flux is higher. Thus, the PAC dose required to achieve a given removal percentage is higher in degraded WWTP configuration. For the other micropollutants (34 quantified), artificial sweeteners and phthalates are found at particularly high concentrations in degraded WWTP configuration influents, up to µg/L range. Only pesticides, bisphenol A and parabens are largely eliminated (50-95%), while perfluorinated acids, PAHs, triclosan and sweeteners are not or weakly removed (<50%). The remaining compounds exhibit a very variable fate from campaign to campaign. The fresh PAC dose was identified as the most influencing operation parameter and is strongly correlated to performances. Charge and hydrophobicity of compounds have been recognized as crucial for the micropollutant adsorption on PAC, as well as the molecular weight. Finally, a PAC dose of 10 mg/L allows an average removal of 72-80% of the sum of the PhPHs in nominal WWTP configuration. The comparaison of the results with those from the scarce other studies tends to indicate that an extrapolation of them to different PAC processes and to other WWTPs could be possible and relevant, taking into account the differences of water quality from WWTP to WWTP.


Subject(s)
Charcoal/chemistry , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification , Hormones/isolation & purification , Pharmaceutical Preparations/isolation & purification , Pilot Projects , Powders , Water Quality
7.
Sci Total Environ ; 488-489: 26-35, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24815554

ABSTRACT

Phthalates and alkylphenols are toxics classified as endocrine disrupting compounds (EDCs). They are of particular concern due to their ubiquity and generally higher levels found in the environment comparatively to other EDCs. Industrial and domestic discharges might affect the quality of receiving waters by discharging organic matter and contaminants through treated waters and combined sewer overflows. Historically, industrial discharges are often considered as the principal vector of pollution in urban areas. If this observation was true in the past for some contaminants, no current data are today available to compare the quality of industrial and domestic discharges as regards EDCs. In this context, a total of 45 domestic samples as well as 101 industrial samples were collected from different sites, including 14 residential and 33 industrial facilities. This study focuses more specifically on 4 phthalates and 2 alkylphenols, among the most commonly studied congeners. A particular attention was also given to routine wastewater quality parameters. For most substances, wastewaters from the different sites were heavily contaminated; they display concentrations up to 1200 µg/l for di-(2-ethylhexyl) phthalate and between 10 and 100 µg/l for diethyl phthalate and nonylphenol. Overall, for the majority of compounds, the industrial contribution to the flux of contaminant reaching the wastewater treatment plants ranges between 1 and 3%. The data generated during this work constitutes one of the first studies conducted in Europe on industrial fluxes for a variety of sectors of activity. The study of the wastewater contribution was used to better predict the industrial and domestic contributions at the scale of a huge conurbation heavily urbanized but with a weak industrial cover, illustrated by Paris. Our results indicate that specific investigations on domestic discharges are necessary in order to reduce the release of phthalates and alkylphenols in the sewer systems for such conurbations.


Subject(s)
Environmental Monitoring , Phenols/analysis , Phthalic Acids/analysis , Waste Disposal, Fluid , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Endocrine Disruptors/analysis , Industrial Waste/analysis , Industrial Waste/statistics & numerical data , Paris , Wastewater/statistics & numerical data
8.
Environ Sci Pollut Res Int ; 21(8): 5267-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24323325

ABSTRACT

This study aimed at: (a) providing information on the occurrence and concentration ranges in urban stormwater for a wide array of pollutants (n = 77); (b) assessing whether despite the differences between various catchments (land use, climatic conditions, etc.), the trends in terms of contamination level are similar; and (c) analyzing the contribution of total atmospheric fallout (TAF) with respect to sources endogenous to this contamination. The studied contaminants include conventional stormwater contaminants (polycyclic aromatic hydrocarbons (PAHs), Zn, Cu, Pb, etc.), in addition to poorly or undocumented pollutants such as nonylphenol and octylphenol ethoxylates (NPnEO and OPnEO), bisphenol A (BPA), polybrominated diphenyl ethers (PBDEs), a wide variety of pesticides, and various metals of relevance (As, Ti, Sr, V). Sampling and analysis were performed using homogeneous methods on three urban catchments with different land use patterns located in three distinct French towns. For many of these pollutants, the results do not allow highlighting a significant difference in stormwater quality at the scale of the three urban catchments considered. Significant differences were, however, observed for several metals (As, Cr, Cu, Ni, Sr and Zn), PAHs, and PBDEs, though this assessment would need to be confirmed by further experiments. The pollutant distributions between dissolved and particulate phases were found to be similar across the three experimental sites, thus suggesting no site dependence. Lastly, the contributions of TAF to stormwater contamination for micropollutants were quite low. This finding held true not only for PAHs, as previously demonstrated in the literature, but also for a broader range of molecules such as BPA, NPnEO, OPnEO, and PBDEs, whose high local production is correlated with the leaching of urban surfaces, buildings, and vehicles.


Subject(s)
Water Pollutants, Chemical/analysis , Atmosphere/chemistry , Benzhydryl Compounds/analysis , Cities , Environmental Monitoring/methods , France , Metals/analysis , Phenols/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Rain/chemistry , Water Pollution, Chemical/statistics & numerical data
9.
Environ Sci Pollut Res Int ; 21(8): 5379-90, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24366825

ABSTRACT

This paper compares the removal performances of two complete wastewater treatment plants (WWTPs) for all priority substances listed in the Water Framework Directive and additional compounds of interest including flame retardants, surfactants, pesticides, and personal care products (PCPs) (n = 104). First, primary treatments such as physicochemical lamellar settling (PCLS) and primary settling (PS) are compared. Similarly, biofiltration (BF) and conventional activated sludge (CAS) are then examined. Finally, the removal efficiency per unit of nitrogen removed of both WWTPs for micropollutants is discussed, as nitrogenous pollution treatment results in a special design of processes and operational conditions. For primary treatments, hydrophobic pollutants (log K ow > 4) are well removed (>70 %) for both systems despite high variations of removal. PCLS allows an obvious gain of about 20 % regarding pollutant removals, as a result of better suspended solids elimination and possible coagulant impact on soluble compounds. For biological treatments, variations of removal are much weaker, and the majority of pollutants are comparably removed within both systems. Hydrophobic and volatile compounds are well (>60 %) or very well removed (>80 %) by sorption and volatilization. Some readily biodegradable molecules are better removed by CAS, indicating a better biodegradation. A better sorption of pollutants on activated sludge could be also expected considering the differences of characteristics between a biofilm and flocs. Finally, comparison of global processes efficiency using removals of micropollutants load normalized to nitrogen shows that PCLS + BF is as efficient as PS + CAS despite a higher compactness and a shorter hydraulic retention time (HRT). Only some groups of pollutants seem better removed by PS + CAS like alkylphenols, flame retardants, or di-2-ethylhexyl phthalate (DEHP), thanks to better biodegradation and sorption resulting from HRT and biomass characteristics. For both processes, and out of the 68 molecules found in raw water, only half of them are still detected in the water discharged, most of the time close to their detection limit. However, some of them are detected at higher concentrations (>1 µg/L and/or lower than environmental quality standards), which is problematic as they represent a threat for aquatic environment.


Subject(s)
Sewage/chemistry , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Biofilms , Biomass , Cosmetics/analysis , Filtration , Pesticides/analysis , Water Pollutants, Chemical/metabolism
10.
Water Sci Technol ; 64(7): 1450-8, 2011.
Article in English | MEDLINE | ID: mdl-22179642

ABSTRACT

This paper presents the results of the concentrations (µg/L) and fluxes (g/ha) of priority substances in stormwater from three watersheds with different land use patterns (namely, residential, urban dense, high urban density). Samples were collected at the outlet of these watersheds. Thirteen chemical groups were investigated corresponding to 88 individual substances before treatment. Results showed that stormwater discharges contained 55 substances, among them some metals, organotins, PAHs, PCBs, alkylphenols, pesticides, phthalates, cholorophenols and volatile organic compounds. Therefore, stormwater was highly contaminated. However, this contamination was often comparable from site to site, since no significant difference of the pollutant load was observed between the land use patterns.


Subject(s)
Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis
11.
Water Sci Technol ; 63(5): 853-8, 2011.
Article in English | MEDLINE | ID: mdl-21411933

ABSTRACT

This study was undertaken to supply data on both priority pollutant (PP) occurrence and concentrations in combined sewer overflows (CSOs). A single rain event was studied on 13 sites within the Paris sewer network. For each sample, a total of 66 substances, including metals, polycyclic aromatic hydrocarbons (PAHs), pesticides, organotins, volatile organic compounds, chlorobenzenes, phthalates and alkylphenols were analyzed. Of the 66 compounds analyzed in all, 40 PPs including 12 priority hazardous substances were detected in CSOs. As expected, most metals were present in all samples, reflecting their ubiquitous nature. Chlorobenzenes and most pesticides were never quantified above the limit of quantification, while the majority of the other organic pollutants, except DEHP (median concentration: 22 µg.l(-1)), were found to lie in the µg.l(-1) range. For the particular rain event studied, the pollutant loads discharged by CSOs were evaluated and then compared to pollutant loads conveyed by the Seine River. Under the hydraulic conditions considered and according to the estimations performed, this comparison suggests that CSOs are potentially significant local source of metals, PAHs and DEHP. Depending on the substance, the ratio between the CSO and Seine River loads varied from 0.5 to 26, underscoring the important local impact of CSOs at the scale of this storm for most pollutants.


Subject(s)
Drainage, Sanitary/methods , Waste Disposal, Fluid/methods , Water Pollution/prevention & control , Paris
12.
Water Sci Technol ; 63(4): 633-40, 2011.
Article in English | MEDLINE | ID: mdl-21330707

ABSTRACT

Combined sewers receive high toxic trace metal loads emitted by various sources, such as traffic, industry, urban heating and building materials. During heavy rain events, Combined Sewer Overflows (CSO) can occur and, if so, are discharged directly into the aquatic system and therefore could have an acute impact on receiving waters. In this study, the concentrations of 18 metals have been measured in 89 samples drawn from the three pollutant Entry Pathways in Combined Sewers (EPCS): i) roof runoff, ii) street runoff, and iii) industrial and domestic effluents and also drawn from sewer deposits (SD). The aim of this research is to identify metallic markers for each EPCS; the data matrix was submitted to principal component analysis in order to determine metallic markers for the three EPCS and SD. This study highlights the fact that metallic content variability across samples from different EPCS and SD exceeds the spatio-temporal variability of samples from the same EPCS. In the catchment studied here, the most valuable EPCS and SD markers are lead, sodium, boron, antimony and zinc; these markers could be used in future studies to identify the contributions of each EPCS to CSO metallic loads.


Subject(s)
Environmental Pollution/analysis , Sewage/chemistry , Trace Elements/analysis , Lead/analysis , Principal Component Analysis , Sodium/analysis
13.
Water Res ; 44(20): 5875-86, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20696453

ABSTRACT

An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer. Despite the extent of initial field investigations, no organic deposit was observed to be present on sewer lines within the catchments, which implies that this organic deposit is probably present in another form or to be found elsewhere in the main trunks.


Subject(s)
Rain/chemistry , Sewage/analysis , Sewage/chemistry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Carbon/analysis , Environmental Monitoring , Metals, Heavy/analysis , Nitrogen/analysis
14.
Water Sci Technol ; 62(4): 822-8, 2010.
Article in English | MEDLINE | ID: mdl-20729584

ABSTRACT

In this paper, we present the first results on the geochemical cycle of PolyBrominated Diphenyl Ethers (or PBDE) in the Paris Region (France). In order to provide information about the distribution and mobility of eight PBDE congeners, we first determined the level of contamination of different environmental compartments: i.e. atmosphere, soils and waters. Atmospheric PBDE deposition was estimated from a site located in the centre of Paris. Surface soils (0-10 cm) were collected from multiple wooded, rural and urban locations through the Paris Region (12,000 km²). To complete our investigation, we measured PBDE concentrations/contents in the runoff from an urban catchment and settleable particles from the Seine River. Hence, gained results showed that in the superficial soils, the highest concentrations of highly brominated congeners were measured in the vicinity of the most urbanized areas whereas less brominated congeners were widespread in the whole Paris Region. This could be explained by the higher affinity of highly brominated congeners for the solid phase substrata coupled with the fact that the atmospheric deposition occurred mainly through particle deposition (close to 90% of the total atmospheric deposition). To the opposite, the less brominated congeners from the superficial soils were readily transferred to the dissolved phase of runoff and could reach more distant terrestrial and aquatic systems. Finally, a mass transfer was established at the scale of the Paris metropolitan city (105 km²). It showed that the cycle of PBDE in this particular urban area is highly dynamic with multiple sources and sinks, and rapid transfers between the ecosystem compartments.


Subject(s)
Air Pollutants/analysis , Halogenated Diphenyl Ethers/analysis , Soil Pollutants/analysis , Urban Population , Agriculture , Humans , Paris , Population Density , Trees
15.
Water Sci Technol ; 58(12): 2453-65, 2008.
Article in English | MEDLINE | ID: mdl-19092225

ABSTRACT

Settling velocities of TSS and of particulate pollutants (COP, PDCO, PTKN, PCu, PPb, PZn, PPAH) measured on a wide range of wet weather flow (WWF) samples collected at different levels of the Parisian combined sewer system are reported. The recorded V30 (0.01 to 0.1 mm s(-1)) and V50 (0.09 to 0.6 mm s(-1)) values exceed by a factor 10 those of dry weather sewage and also exceed the values measured for pavement runoff. These values lie however often below the 0.28 mm s(-1) reference value considered in France for the design of WWF settling facilities. A decrease in settleability is observed between a small upstream catchment and larger scaled downstream catchments. The settling behaviour of particulate pollutants varies depending on the considered parameter and can differ significantly from the TSS behaviour, due to a non homogeneous distribution of micropolluants over the different classes of particles. PZn and PTKN appear far less settleable than TSS, whereas PPAH show higher settleability.


Subject(s)
Drainage, Sanitary , Particulate Matter/chemistry , Rain , Water Pollutants/chemistry , Carbon/analysis , Metals/chemistry , Nitrogen/chemistry , Organic Chemicals/chemistry , Particle Size , Polycyclic Aromatic Hydrocarbons/chemistry , Waste Disposal, Fluid
16.
Water Res ; 42(3): 539-49, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17822734

ABSTRACT

An on-site observatory of urban pollutant loads in combined sewers has been created in Paris in order to investigate wet weather pollutant loads at different spatial scales. This observatory is composed of six urban catchments, covering areas from 41 to 2581ha. For a wide range of parameters including suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), metals (Cd, Cu, Pb, Zn), aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (AHs and PAHs), this article serves to evaluate the potential scale effect on wet weather flow (WWF) quality. Although the extensive data set compiled herein has emphasized the high variability in WWF quality from one rain event to the next, no scale effect could be observed for a given rain event on pollutant concentrations, distributions between dissolved and particulate phases, pollutant contents and loads. Such results are of prime importance since they suggest (i) no spatial scale influence on WWF quality for the considered catchments and (ii) similar dominant sources and transfer processes at the various spatial scales.


Subject(s)
Rain , Water Pollutants, Chemical/analysis , Carbon/analysis , Hydrocarbons/analysis , Metals, Heavy/analysis , Nitrogen/analysis , Paris , Water Supply/analysis
17.
Water Sci Technol ; 54(6-7): 185-93, 2006.
Article in English | MEDLINE | ID: mdl-17120649

ABSTRACT

In Paris, the OPUR research programme created an experimental on-site observatory of urban pollutant loads in combined sewer systems in order to characterise the dry and wet weather flows at different spatial scales. This article presents the first results on the spatial variability of the polycyclic aromatic hydrocarbon (PAH) load during wet weather flow (WWF). At the scale of a rain event, investigations revealed that (i) PAH concentrations were relatively homogenous whatever the spatial scale and were greater than those of the dry weather flow (DWF), (ii) PAH distributions between dissolved and particulate phases were constant, and (iii) PAH fingerprints exhibited a similar pattern for all catchments. Moreover, an evaluation of the contribution of DWF, runoff and erosion of sewer deposits to WWF load was established. According to the hypothesis on the runoff concentration, the contributions were evaluated at 14, 8 and 78%, respectively, at the scale of the Marais catchment. For all the catchments, the runoff contribution was found quite constant and evaluated at approximately 10%. The DWF contribution seems to increase with the catchment area, contrary to the sewer erosion contribution, which seems to decrease. However, this latter still remains an important source of pollution. These first trends should be confirmed and completed by more investigations of rain events.


Subject(s)
Cities , Polycyclic Aromatic Hydrocarbons/analysis , Sewage , Water Pollution , Environmental Pollution , Paris , Waste Disposal, Fluid
18.
Water Sci Technol ; 52(3): 111-8, 2005.
Article in English | MEDLINE | ID: mdl-16206850

ABSTRACT

For three years (2001 - 2003), sediment samples were extracted from about 100 silt traps (STs) spread out all over the combined sewer network of Paris. These STs, whose volume varied from 21 to 325 m3, were cleaned out as soon as their filling capacities were reached. All these sediment samples were analysed for physicochemical parameters (pH, organic matter (OM) content, grain size distribution), total hydrocarbons (THs), 16 polycyclic aromatic hydrocarbons (PAHs) selected from the priority list of the US-EPA, and heavy metals (Al, Ag, As, Cd, Cu, Cr, Sn, Fe, Mn, Hg, Ni, Pb, Zn). For each silt trap, six sediment samples were extracted before the clean out procedure: three samples were extracted from the sediment surface (5-10 cm depth) and three other samples were extracted from a deeper sediment layer (approximately at 1 m depth). The location of these sampling points allowed us to take into account the possible spatial fluctuation of pollutant loads in each ST. The first results showed that there were some important inter-site variations of pollutant contents. These variations have to be taken into account by the sewer manager for the fate of the ST sediments. Therefore, we decided to assess the grain size distribution of some pollutants. OM, heavy metals and PAHs have been investigated on the five grain size fractions (> 20 mm, 8-20 mm, 0.5-8 mm, 50-500 microm, < 50 microm) for 9 STs, which have been selected on their heavy metal content basis. This work aims at understanding the distribution of the pollutant contents and at improving the knowledge of the ST sediment pollution.


Subject(s)
Environmental Pollution/analysis , Metals, Heavy/analysis , Metals, Heavy/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/chemistry , Sewage/chemistry , Drainage, Sanitary , Paris , Particle Size , Quality Control
19.
Water Sci Technol ; 52(3): 119-27, 2005.
Article in English | MEDLINE | ID: mdl-16206851

ABSTRACT

This work aims to characterise the pollutant loads fixed to the Lift Station (LS) sediments. Firstly, levels of n-alkanes, PAH and heavy metals (Fe, Zn, Cu, Pb and Cd) of LS sediments were assessed, and were found of the same order of magnitude as those reported for street runoff. In addition, investigations on LS sediment reveal that n-alkane distributions reflect the combination of biologic and petrogenic inputs, while PAH distributions indicate a major pyrolytic origin with traces of petrogenic contaminations. The metallic fingerprints also attest to the important contribution of road traffic emissions. Secondly, a comparison between LS sediment and the Gross Bed Sediment (GBS) pollutant contamination was established in order to optimize the in-sewer deposits management. For hydrocarbons, a similar contamination between both sediments is found. For the heavy metals, this comparison indicates a similar Fe and Zn content, while Pb, Cu and Cd contents differ. Indeed, LS sediment shows a higher Cu content, linked to the occurrence of intensive brake lining abrasion, compared with GBS, which reflects a higher Pb and Cd content, owing to the contribution of roof runoff. This result reveals the impact of specific inputs such as road traffic or roof runoff on the in-sewer sediments contamination, and provides a complete overview of the LS sediment contamination. This database could be used by the municipality to optimize their contaminated in-sewer sediment management.


Subject(s)
Environmental Pollutants/analysis , Hydrocarbons/analysis , Hydrocarbons/chemistry , Metals, Heavy/analysis , Metals, Heavy/chemistry , Sewage/chemistry , Paris
20.
Water Sci Technol ; 47(4): 35-43, 2003.
Article in English | MEDLINE | ID: mdl-12666799

ABSTRACT

In a sewer trunk, three kinds of deposit, acting as potential wet weather sources, be found: the biofilm, the organic layer and the gross bed sediment. This research program, on the "Le Marais" catchment (Paris, France), focused on the biofilm. The objectives were to describe, using a Transmission Electronic Microscope, the architecture of the sewer biofilm and to investigate the contents and the distributions of aliphatic and aromatic hydrocarbons in biofilm. The electron micrographs illustrated a uniform film of bacteria totally covering the surface of a thick organic matrix. A large cohesion of the cell layer and organic matrix complex, due to exopolysaccharides, was noticed. Hence, the hydrocarbon contents were measured not only in the biofilm itself, but in this complex. Our results showed that almost all hydrocarbons were stored in the gross bed sediment and the organic layer and, consequently, the biofilm was not an important potential source of wet weather pollution. Comparison between the hydrocarbon distributions in the biofilm and in the other deposits indicated that the biofilm could be used as an indicator of the aliphatic hydrocarbon pollution in the organic layer.


Subject(s)
Biofilms , Hydrocarbons/analysis , Waste Disposal, Fluid , Environmental Monitoring , Geologic Sediments/chemistry , Rain , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...