Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
ACS Omega ; 9(26): 28534-28545, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973915

ABSTRACT

Methionine aminopeptidase-II (MetAP-II) is a metalloprotease, primarily responsible for the cotranslational removal of the N-terminal initiator methionine from the nascent polypeptide chain during protein synthesis. MetAP-II has been implicated in angiogenesis and endothelial cell proliferation and is therefore considered a validated target for cancer therapeutics. However, there is no effective drug available against MetAP-II. In this study, we employ Adaptive Bandit molecular dynamics simulations to investigate the structural dynamics of the apo and ligand-bound MetAP-II. Our results focus on the dynamic behavior of the disordered loop that is not resolved in most of the crystal structures. Further analysis of the conformational flexibility of the disordered loop reveals a hidden cryptic pocket that is predicted to be potentially druggable. The network analysis indicates that the disordered loop region has a direct signaling route to the active site. These findings highlight a new way to target MetAP-II by designing inhibitors for the allosteric site within this disordered loop region.

2.
Eur J Dent ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788770

ABSTRACT

OBJECTIVES: The aim of this study was to evaluate and compare the effect of irradiance light and storage media on the elution of triethylene glycol dimethacrylate (TEGDMA) from conventional Filtek Z350XT 3M ESPE and two bulk-fill composites Shofu Beautifil-Bulk and Filtek Bulk fill flowable 3M ESPE using high-performance liquid chromatography (HPLC). MATERIALS AND METHODS: Shofu Beautifil-Bulk, Filtek Bulk fill flowable 3M ESPE, and Filtek Z350XT 3M ESPE were the three types of composites used in this study. Disk shaped samples of 4-mm thickness and 10-mm diameter were fabricated using a stainless steel mold and were polymerized using light emitting diode (LED) and quartz tungsten halogen (QTH) lamps. After polymerization, the samples were immersed in ethanol, artificial saliva with betel quid extract, and distilled water for 1, 7, and 30 days, respectively. The elution of monomer TEGDMA was evaluated using HPLC. STATISTICAL ANALYSIS: To evaluate the mean concentration difference, mixed way analysis of variance (ANOVA) was applied. Between different light, materials, and within the time duration, Tukey's post hoc test was used. A p value of 0.05 was considered significant. RESULTS: During the first day of storage, a significant amount of monomer TEGDMA elution was seen in all the materials. The highest values observed to be in the disks cured with QTH lamp. However, the highest elution was seen when the disks were immersed in ethanol/water solution. While the most stable medium was distilled water, artificial saliva with betel nut extract also had a significant effect on the elution of TEGDMA. The highest value obtained was of Filtek Bulk fill flowable 3M ESPE after 30 days of immersion in both LED and QTH cured disks. CONCLUSION: Filtek Bulk fill flowable 3M ESPE shows better properties in relation to the release of monomer TEGDMA as it releases less amount of monomer in the storage media. The release of monomer was highest in ethanol as compared to artificial saliva and distilled water with the passage of time.

3.
J Chem Inf Model ; 63(24): 7729-7743, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38059911

ABSTRACT

Understanding the unbinding kinetics of protein-ligand complexes is considered a significant approach for the design of ligands with desired specificity and safety. In recent years, enhanced sampling methods have emerged as effective tools for studying the unbinding kinetics of protein-ligand complexes at the atomistic level. MetAP-II is a target for the treatment of cancer for which not a single effective drug is available yet. The identification of the dissociation rate of ligands from the complexes often serves as a better predictor for in vivo efficacy than the ligands' binding affinity. Here, funnel-based restraint well-tempered metadynamics simulations were applied to predict the residence time of two ligands bound to MetAP-II, along with the ligand association and dissociation mechanism involving the identification of the binding hotspot during ligand egress. The ligand-egressing route revealed by metadynamics simulations also correlated with the identified pathways from the CAVER analysis and by the enhanced sampling simulation using PLUMED. Ligand 1 formed a strong H-bond interaction with GLU364 estimating a higher residence time of 28.22 ± 5.29 ns in contrast to ligand 2 with a residence time of 19.05 ± 3.58 ns, which easily dissociated from the binding pocket of MetAP-II. The results obtained from the simulations were consistent to reveal ligand 1 being superior to ligand 2; however, the experimental data related to residence time were close for both ligands, and no kinetic data were available for ligand 2. The current study could be considered the first attempt to apply an enhanced sampling method for the evaluation of the binding kinetics and thermodynamics of two different classes of ligands to a binuclear metalloprotein.


Subject(s)
Molecular Dynamics Simulation , Physics , Ligands , Thermodynamics , Kinetics , Methionine , Protein Binding
4.
Eur J Dent ; 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38086426

ABSTRACT

OBJECTIVE: Clinical methods use the subjective diagnosis of periodontal diseases by visual observation that could result in differences and variability of diagnosis. The addition of specific markers could aid in the accurate diagnosis of the local population. The objective of the study was to target two of the major proteins for possible significance in such an approach. MATERIALS AND METHODS: Unstimulated saliva samples were collected from 60 participants aged between 18 and 70 years. Three groups each with twenty participants were recruited into periodontitis, gingivitis, and healthy control. STATISTICAL ANALYSIS: The samples were analyzed using human enzyme-linked immunosorbent assay kits for matrix metalloproteinase-8 (MMP-8) and interleukin-1ß (IL-1ß). RESULTS: SPSS version 20 was used to analyze the result. Posthoc analysis by Tukey's test revealed that MMP-8 levels were higher in gingivitis and periodontitis groups as compared with healthy controls. The test also revealed that IL-1ß levels were higher in the periodontitis group compared with the healthy control and gingivitis group. Additionally, one-way analysis of variance analysis showed a significant effect on probing depth in gingivitis and periodontitis patients. The mean age of periodontitis group was significantly higher than other groups. CONCLUSION: Salivary biomarkers may provide useful diagnostic information and could be utilized as tests for periodontal disease screening, prognosis, and prediction.

5.
J Biomol Struct Dyn ; : 1-18, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747063

ABSTRACT

The Pantothenate synthetase (PS) from the Mycobacterium tuberculosis (Mtb) holds a crucial role in the survival and robust proliferation of bacteria through its catalysis of coenzyme A and acyl carrier protein synthesis. The present study undertook the PS drug target in complex with a co-crystallized ligand and subjected it to docking and virtual screening approaches. The experimental design encompassed three discrete datasets: an active dataset featuring 136 compounds, an inactive dataset comprising 56 compounds, and a decoys dataset curated from the zinc library, comprising an extensive compilation of approximately 53,000 compounds. The compounds' binding energies were observed to be in the range of -5 to ∼-14 kcal/mol. Additionally, binding energy results were further refined through Enrichment Factor analysis (EF). EF is a new statistical approach which uses the scores obtained from docking-based virtual screening and predicts the precision of the scoring function. Remarkably, the Enrichment Factor (EF) analysis produced exceptionally favorable outcomes, attaining an EF of approximately 49% within the uppermost 1% fraction of the compound distribution. Finally, a total of eight compounds, evenly distributed between the active dataset and the decoys dataset, emerged as potent inhibitors of the Pantothenate synthetase (PS) enzyme. The analysis of inhibition constants and binding energy revealed a notable correlation, with an r-squared value (r2) of 0.912 between the two parameters. Furthermore, the shortlisted compounds were subjected to 100 ns MD simulation to determine their stability and dynamics behavior. The decoy compounds that have been identified, exhibiting properties comparable to the active compounds, are postulated as potential candidates for targeting the Pantothenate synthetase (PS) enzyme to treat Mtb infection. Nevertheless, in the pursuit of a comprehensive investigation, it is advisable to undertake additional experimental validation as a component of the subsequent study.Communicated by Ramaswamy H. Sarma.

6.
iScience ; 26(10): 107830, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766976

ABSTRACT

Highly pathogenic avian influenza A H5N1 viruses cause high mortality in humans and have pandemic potential. Effective vaccines and treatments against this threat are urgently needed. Here, we have refined our previously established model of lethal H5N1 infection in cynomolgus macaques. An inhaled aerosol virus dose of 5.1 log10 plaque-forming unit (pfu) induced a strong febrile response and acute respiratory disease, with four out of six macaques succumbing after challenge. Vaccination with three doses of adjuvanted seasonal quadrivalent influenza vaccine elicited low but detectable neutralizing antibody to H5N1. All six vaccinated macaques survived four times the 50% lethal dose of aerosolized H5N1, while four of six unvaccinated controls succumbed to disease. Although vaccination did not protect against severe influenza, vaccinees had reduced respiratory dysfunction and lower viral load in airways compared to controls. We anticipate that our macaque model will play a vital role in evaluating vaccines and antivirals against influenza pandemics.

7.
Article in English | MEDLINE | ID: mdl-37646887

ABSTRACT

Synthetic pesticides are employed to enhance agricultural production. Chronic exposure to organophosphate (OP) pesticides may be a source of health problems. The present study was designed to examine an association of GSTP1 (rs1695) polymorphism with OP pesticide chronic exposure. A case-control study was recruited with 250 subjects comprising exposed (n = 100) and controls (n = 150). A survey was conducted to determine the pesticide type to which workers had exposed. According to recorded survey assessment, two compounds of OP pesticides chloropyrifos and malathion were investigated in the blood samples of exposed study subjects using high-performance liquid chromatography (HPLC). For screening of genetic polymorphism in GSTP1 (rs1695) polymerase chain reaction, restriction length polymorphism (PCR-RFLP) and agarose gel electrophoresis were performed. Statistically, data were analyzed using SPSS v. 20.0 and MedCal© software. Total chrom© navigator programmer was used for detection of OP residues in serum and local pesticide solution. chloropyrifos-OP pesticide residues were detected in serum of estimated chronically exposed subjects at 206 nm HPLC optimal conditions. The pattern of GSTP1 (rs1695) genotypic frequencies depicted that heterozygous genotype was higher in Chloropyrifos exposed subjects (0.56) when compared with controls (0.44). Statistical outcomes showed an insignificant association with GSTP1 (rs1695) polymorphism and chloropyrifos-OP pesticide toxicity (Fisher's exact test 1.0, p = 0.25). An insignificant allelic investigation reflected a protective effect of mutant allele G against chloropyrifos-OP pesticide toxicity in exposed subjects. Findings may be helpful in identifying bioaccumulated pesticide residues, but in studied Pakistani exposed workers, no significant association of GSTP1 (rs1695) variant with chloropyrifos-OPs was demonstrated.

8.
Biotechnol J ; 18(11): e2200477, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37458688

ABSTRACT

Halophytes are the native inhabitants of saline environment. Their biomass can be considered as a potential substrate for the production of microbial enzymes. This study was intended at feasible utilization of a halophytic biomass, Cressia cretica, for pectinase production using a halo- and thermo-tolerant bacterium, Bacillus vallismortis MH 10. The data from fractionation of the C. cretica biomass revealed presence of 17% pectin in this wild biomass. Seven different factors (temperature, agitation, pH, inoculum size, peptone concentration, substrate concentration, and incubation time) affecting pectinase production using C. cretica were assessed through a statistical tool, Plackett-Burman design. Consequently, two significant factors (incubation time and peptone concentration) were optimized using the central composite design. The strain produced 20 IU mL-1 of pectinase after 24 h under optimized conditions. The enzyme production kinetics data also confirmed that 24 h is the most suitable cultivation period for pectinase production. Fourier transform infrared spectroscopy and scanning electron microscopy of C. cretica biomass ascertained utilization of pectin and structural changes after fermentation. The purification of pectinase by using DEAE column yielded specific activity and purification fold of 88.26 IU mg-1 and 3.2, respectively. The purified pectinase had a molecular weight of >65 kDa. This study offers prospects of large-scale production of pectinase by halotolerant strain in the presence of economical and locally grown substrate that makes the enzyme valuable for various industrial operations.


Subject(s)
Peptones , Polygalacturonase , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Biomass , Fermentation , Pectins/metabolism
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 122953, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37392539

ABSTRACT

Carminic Acid (CA), an insect-derived red color, is widely used as a colorant and additive in food and non-food items. The detection of CA is of great concern since it is unacceptable for vegetarians and vegans consumers. Therefore, it is important for food authorities to have a rapid detection method for CA. We describe here a simple and rapid method for the qualitative detection of CA, using Pb2+ for complex formation. As a result, the sample solution shows a visible change from pink to purple (bathochromic shift) which could also be analyzed through a spectrophotometer at λmax = 605 nm. The structure of the CA-Pb2+ complex was also studied through advanced spectroscopic techniques. Moreover, the presence of iron results in the formation of a stable CA-Fe2+ complex without any significant color change, as Fe2+ has a stronger binding affinity with CA. Thus, sodium fluoride (NaF) was used to prevent CA-Fe2+ complex formation. Therefore, two methods were developed based on the absence (method I) and presence (method II) of NaF. The LOD and LOQ for the method I was 0.0025 and 0.0076 mg mL-1, and for method II, values were 0.0136 and 0.0415 mg mL-1, respectively. The methods were also validated by intra and inter-day analyses. A total of 45 commercials, including food and non-food samples, were screened for the detection of CA. The developed methods are applicable for the effective and rapid surveillance of CA in various samples without the use of high-tech instruments.


Subject(s)
Carmine , Colorimetry , Colorimetry/methods , Lead , Spectrum Analysis , Iron
10.
Res Vet Sci ; 161: 96-102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329851

ABSTRACT

Avian mycoplasmosis is an infection that commonly prevails in birds, particularly in poultry chickens. Among mycoplasmosis causing organisms, Mycoplasmopsis synoviae is a predominant and lethal pathogen to the aves. Considering the increased incidence of infections by M. synoviae, the prevalence of M. synoviae was deduced in poultry chickens and fancy birds of Karachi region. The lungs and tracheal samples from chicken and dead fancy birds and swab samples from live fancy birds were collected and investigated by amplifying 16 s rRNA gene of M. synoviae. Biochemical characteristics of M. synoviae was also evaluated. Furthermore, surface-associated membrane proteins, that represent key antigens for diagnosis of M. synoviae infection was extracted by Triton X- 114 method. Results showed that M. synoviae was detected more frequently in lungs than in trachea, that could be due to its invasion capacity and tissue affinity. SDS PAGE analysis of extracted membrane proteins showed two prominent hydrophobic proteins of different molecular mass including proteins of 150 and 50 kDa. Protein of 150 kDa was purified by size exclusion chromatography and it exhibited agglutinogen activity. Purified protein was used in the development of one-step immunochromatographic (ICT) assay for the detection of antibodies against M. synoviae using gold nanoparticles coated with polyclonal antibodies. Low levels of antibodies were detected by the developed ICT kit, which has 88% sensitivity with 92% specificity.


Subject(s)
Metal Nanoparticles , Mycoplasma Infections , Mycoplasma synoviae , Poultry Diseases , Animals , Chickens , Prevalence , Pakistan/epidemiology , Gold , Mycoplasma synoviae/genetics , Mycoplasma Infections/diagnosis , Mycoplasma Infections/epidemiology , Mycoplasma Infections/veterinary , Poultry , Membrane Proteins , Poultry Diseases/diagnosis , Poultry Diseases/epidemiology
11.
J Phys Chem B ; 127(22): 5072-5083, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37220311

ABSTRACT

The present study successfully implemented the ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism for the investigation of structural and dynamical properties of hydrated cobalt-porphyrin complexes. Considering the significance of cobalt ions in biological systems (for instance, vitamin B12), which reportedly incorporate cobalt ions in a d6, low spin, +3 state chelated in the corrin ring, an analog of porphyrin, the current study is focused on cobalt in the oxidation states +2 and +3 bound to the parent porphyrin lead structures embedded in an aqueous solution. These cobalt-porphyrin complexes were investigated in terms of their structural and dynamical properties at the quantum chemical level. The structural attributes of these hydrated complexes revealed the contrasting features of the water binding to these solutes, including a detailed evaluation of the associated dynamics. The study also yielded notable findings in regard to the respective electronic configurations vs coordination, which suggested that Co(II)-POR possesses a 5-fold square pyramidal coordination geometry in an aqueous solution containing the metal ion coordinating to four nitrogen atoms of the porphyrin ring and one axial water as the fifth ligand. On the other hand, high-spin Co(III)-POR was hypothesized to be more stable due to the smaller size-to-charge ratio of the cobalt ion, but the high-spin complex demonstrated unstable structural and dynamical behavior. However, the corresponding properties of the hydrated Co(III)LS-POR revealed a stable structure in an aqueous solution, thus suggesting the Co(III) ion to be in a low-spin state when bound to the porphyrin ring. Moreover, the structural and dynamical data were augmented by computing the free energy of water binding to the cobalt ions and the solvent-accessible surface area, which provide further information on thermochemical properties of the metal-water interaction and the hydrogen bonding potential of the porphyrin ring in these hydrated systems.

12.
Arch Microbiol ; 205(5): 181, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031295

ABSTRACT

Methicillin resistant Staphylococcus aureus (MRSA) is an emerging pathogen posing a considerable burden on the healthcare system due to its involvement in skin and soft tissue infections (SSTIs). Lectins are carbohydrate binding proteins found ubiquitously in animals, plants and microorganisms. Extraction and isolation of proteins from Musa acuminata were performed by using Affinity chromatography with Sephadex G 75 to determine antibiofilm activity against MRSA. Enterococcus strains obtained from dairy products, beans and vegetables were also screened for its potential to inhibit growth and biofilm formation of MRSA by using 96 well microtiter plates. Synergistic effect of cell free supernatant of Enterococcus with proteins from ripe banana were also tested. BanLec was successfully isolated and appeared as 15 KDa band after SDS-PAGE (15%) while multiple bands of unbound protein fractions were observed. The unbound fractions showed inhibition of planktonic cells and biofilm but BanLec exhibited no significant effect. The CFS of Enterococcus faecium (LCM002), Enterococcus lactis (LCM003) and Enterococcus durans (LCM004 and LCM005) displayed antagonistic effects against pathogen. The synergistic effect of CFS from E. lactis (LCM003) and unbound proteins showed inhibition of biofilm and pathogenic growth. This study demonstrates the use of Enterococcus species and plant proteins against pathogens and results suggested that it can inhibit the growth of resistant strains of Staphylococcus aureus and their synergistic effect has opened new ways to tackle emerging resistance. Furthermore, after assessment of Enterococcus as probiotics, this could be used in food industries as well as in treatment of severe skin infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Musa , Animals , Anti-Bacterial Agents/pharmacology , Biofilms , Enterococcus , Lectins , Microbial Sensitivity Tests
13.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Article in English | MEDLINE | ID: mdl-37020354

ABSTRACT

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Subject(s)
COVID-19 , Communicable Diseases , Vaccines , Humans , Pandemics/prevention & control , COVID-19/prevention & control , Vaccines/therapeutic use , Vaccination , Vaccine Development
14.
Int J Biol Macromol ; 235: 123903, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36870634

ABSTRACT

Agro-industrial wastes and by-products are the natural and abundant resources of biomaterials to obtain various value-added items such as biopolymer films, bio-composites and enzymes. This study presents a way to fractionate and to convert an agro-industrial residue, sugarcane bagasse (SB), into useful materials with potential applications. Initially cellulose was extracted from SB which was then converted into methylcellulose. The synthesized methylcellulose was characterized by scanning electron microscopy and FTIR. Biopolymer film was prepared by using methylcellulose, polyvinyl alcohol (PVA), glutaraldehyde, starch and glycerol. The biopolymer was characterized to exhibit 16.30 MPa tensile strength, 0.05 g/m2 h of water vapor transmission rate, 366 % of water absorption to its original weight after 115 min of immersion, 59.08 % water solubility, 99.05 % moisture retention capability and 6.01 % of moisture absorption after 144 h. Furthermore, in vitro studies on absorption and dissolution of model drug by biopolymer showed 2.04 and 104.59 % of swelling ratio and equilibrium water content, respectively. Biocompatibility of the biopolymer was checked by using gelatin media and it was observed that swelling ratio was higher in initial 20 min of contact. The extracted hemicellulose and pectin from SB were fermented by a thermophilic bacterial strain, Neobacillus sedimentimangrovi UE25 that yielded 12.52 and 6.4 IU mL-1 of xylanase and pectinase, respectively. These industrially important enzymes further augmented the utility of SB in this study. Therefore, this study emphasizes the possibility for industrial application of SB to form various products.


Subject(s)
Cellulose , Saccharum , Cellulose/chemistry , Methylcellulose , Polyvinyl Alcohol/chemistry , Saccharum/chemistry
15.
Biophys Chem ; 294: 106958, 2023 03.
Article in English | MEDLINE | ID: mdl-36682087

ABSTRACT

Gentamicin is used to treat brucellosis, an infectious disease caused by the Brucella species but the drug faces several issues such as low efficacy, instability, low solubility, and toxicity. It also has a very short half-life, therefore, requiring frequent dosing. Consequently, several other antibiotics are also being used for the treatment of brucellosis as a single dose as well as in combination with other antibiotics but none of these therapies are satisfactory. Nanoparticles in particular polymer-based ones utilizing polymers that are biodegradable and biocompatible for instance PLGA are a method of choice to overcome such drug delivery issues and enable potential targeted delivery. The current study focuses on the evaluation of the structural and dynamical properties of a drug-polymer system consisting of gentamicin drug and PLGA polymer nanoparticles in the water representing a targeted drug delivery system for the treatment of brucellosis. For this purpose, all-atom molecular dynamics simulations were carried out on the drug-polymer systems in the absence and presence of the surfactant bis(2-Ethylhexyl) sulfosuccinate (AOT) to determine the structural and dynamical properties as well as the effect of the surfactant on these properties. We also investigated systems in which the polymer constituents were in the form of monomeric units toward decoupling the primary interactions of the monomer units and polymer effects. The simulation results explain the nature of the interactions between the drug and the polymer as well as transport properties in terms of drug diffusion coefficients, which characterize the molecular behavior of gentamicin-polymer nanoparticles for use in brucellosis.


Subject(s)
Brucellosis , Nanoparticles , Humans , Gentamicins/chemistry , Gentamicins/therapeutic use , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Polyglycolic Acid/chemistry , Polyglycolic Acid/therapeutic use , Molecular Dynamics Simulation , Density Functional Theory , Lactic Acid/chemistry , Lactic Acid/therapeutic use , Anti-Bacterial Agents/chemistry , Drug Delivery Systems , Brucellosis/drug therapy , Glycolates/therapeutic use , Surface-Active Agents
16.
J Mol Model ; 29(2): 51, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36680606

ABSTRACT

Molecular dynamics simulations were applied to human 5-LOX to obtain detailed information on its structure and dynamics with and without ligands. The dynamical properties evaluated based on root mean square deviations, root mean square fluctuations and secondary structure prediction helped decipher the contrast dynamic behavior of the systems pointing toward the ligand binding effect. The ligand binding to the protein also perturbed other properties of the protein such as the central bending of the protein and water coordination to the metal ion. The central bending in the protein was reported to be very significant that was associated with the allosteric modulation in the lipoxygenases; therefore, on a similar line, the central bending was evaluated in terms of hinge angle analysis which showed substantial bending between the C-terminal and the N-terminal domain via the linker residues which connects the two domains. On the other hand, the suspected water coordination to the metal ion in the protein was ruled out by computing the iron-water radial distribution function which showed that the water molecule was not found to be in the vicinity of the metal ion. Finally, the binding free energy was estimated for Zileuton and CAPE1 inhibitors bound to 5-LOX via the thermodynamic integration approach which showed that CAPE1 had a strong binding potential for the active site of the protein compared to Zileuton, and the free energy data correlated well with their IC50 values corresponding to the high inhibition potential of CAPE1 compared to Zileuton.


Subject(s)
Arachidonate 5-Lipoxygenase , Molecular Dynamics Simulation , Humans , Ligands , Proteins/chemistry , Water/chemistry , Protein Binding
17.
Res Microbiol ; 174(1-2): 103990, 2023.
Article in English | MEDLINE | ID: mdl-36087828

ABSTRACT

Chrysobacterium indologenes is an emerging MDR pathogen that belongs to the family Flavobacteriaceae. The genome of the C. indologenes, isolated from the nephrotic patient, was sequenced through Illumina MiSeq. The pangenomics of available 56 C. indologenes strains using BPGA revealed an open pangenome (n=5553 CDS), core genome (2141), and accessory genome (2013). The CEG/DEG database identified 662 essential genes that drastically reduced to 68 genes after non-homology analyses towards human and gut microbiome. Further filtering the data for other drug target prioritizing parameters resulted in 32 putative targets. Keeping in view the crucial role played in cell wall biosynthesis, dacB was selected as the final target that encodes D-alanyl-d-alanine carboxypeptidase/endopeptidase (DD-peptidase). The 3D structure of dacB was modelled and rendered to docking analyses against two compound libraries of African plants (n=6842) and Tibetan medicines (n=52). The ADMET profiling exhibited the physicochemical properties of final compounds. The MD simulations showed the stability of inhibitor-DD-peptidase complex and interactions in terms of RMSD, RMSF, binding free energy calculation and H-bonding. We propose that the novel compounds Leptopene and ZINC95486338 from our findings might be potent DD-peptidase inhibitors that could aid in the development of new antibiotic-resistant therapy for the emerging MDR C. indologenes.


Subject(s)
Chryseobacterium , Serine-Type D-Ala-D-Ala Carboxypeptidase , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chryseobacterium/genetics , Genomics
18.
Enzyme Microb Technol ; 162: 110133, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36152593

ABSTRACT

Recent advancements in biorefinery processes necessitate search for cost effective and thermostable cellulases. This study was designed to characterize the cellulase obtained from a thermophilic bacterium, Neobacillus sedimentimangrovi UE25. A combined pretreatment of NaOH and methyltrioctylammonium chloride was given to sugarcane bagasse (SB) for lignin removal and the pretreated SB was utilized as a carbon source for the cellulase production. The thermostable cellulase thus obtained was characterized by adopting central composite design which has not been reported earlier for this purpose. Cellulase showed its maximum activity at pH 7 and temperature 60 â„ƒ and it remained active in the presence of many salts and detergents. Endoglucanase (EG) was found to be stable for 30 min at 80 â„ƒ. The purification of EG by using DEAE column yielded specific activity and purification fold of 365.866 IU mg-1 and 4.264, respectively. The purified EG had a molecular weight of ∼45 kDa. End product tolerance of EG was also evident, as an activity of 228.57 IU mL-1 was observed in the presence of 60 mM glucose which revealed that it does not lose its activity upon accumulation of end-product when the reaction is prolonged. The purified EG exhibited Vmax and Km of 294 U mL-1 min-1 and 36 µM, respectively, in the presence of 60 mM glucose. This novel thermostable cellulase can finds its applications in industrial sector.


Subject(s)
Bacillaceae , Cellulase , Cellulases , Saccharum , Cellulase/metabolism , Cellulose/chemistry , Saccharum/metabolism , Enzyme Stability , Temperature , Glucose , Hydrogen-Ion Concentration
19.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36356572

ABSTRACT

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Animals , Mice , Humans , Hemagglutinins , Broadly Neutralizing Antibodies , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Ferrets , Antibodies, Neutralizing , Immunization
20.
Nat Commun ; 13(1): 4234, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35918315

ABSTRACT

Respiratory syncytial virus is a leading cause of morbidity and mortality in children, due in part to their distinct immune system, characterized by impaired induction of Th 1 immunity. Here we show application of cationic adjuvant formulation CAF08, a liposomal vaccine formulation tailored to induce Th 1 immunity in early life via synergistic engagement of Toll-like Receptor 7/8 and the C-type lectin receptor Mincle. We apply quantitative phosphoproteomics to human dendritic cells and reveal a role for Protein Kinase C-δ for enhanced Th1 cytokine production in neonatal dendritic cells and identify signaling events resulting in antigen cross-presentation. In a murine in vivo model a single immunization at birth with CAF08-adjuvanted RSV pre-fusion antigen protects newborn mice from RSV infection by induction of antigen-specific CD8+ T-cells and Th1 cells. Overall, we describe a pediatric adjuvant formulation and characterize its mechanism of action providing a promising avenue for development of early life vaccines against RSV and other respiratory viral pathogens.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Adjuvants, Immunologic , Animals , Antibodies, Viral , CD8-Positive T-Lymphocytes , Humans , Lung , Mice , Mice, Inbred BALB C , Viral Fusion Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...