Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 103: 104184, 2020 10.
Article in English | MEDLINE | ID: mdl-32891861

ABSTRACT

In the incessant search for innovative cancer control strategies, this study was devoted to the design, synthesis and pharmacological evaluation of dual inhibitors of farnesyltransferase and tubulin polymerization (FTI/MTIs). A series of indolizine-phenothiazine hybrids 16 (amides) and 17 (ketones) has been obtained in a 4-step procedure. The combination of the two heterocycles provided potent tubulin polymerization inhibitors with similar efficiency as the reference phenstatin and (-)-desoxypodophyllotoxin. Ketones 17 were also able to inhibit human farnesyltransferase (FTase) in vitro. Interestingly, three molecules 17c, 17d and 17f were very effective against both considered biological targets. Next, nine indolizine-phenothiazine hybrids 16c, 16f, 17a-f and 22b were evaluated for their cell growth inhibition potential on the NCI-60 cancer cell lines panel. Ketones 17a-f were the most active and displayed promising cellular activities. Not only they arrested the cell growth of almost all tested cancer cells, but they displayed cytotoxicity potential with GI50 values in the low nanomolar range. The most sensitive cell lines upon treatment with indolizine-phenothiazine hybrids were NCI-H522 (lung cancer), COLO-205 and HT29 (colon cancer), SF-539 (human glioblastoma), OVCAR-3 (ovarian cancer), A498 (renal cancer) and especially MDA-MB-435 (melanoma). Demonstrating the preclinical effectiveness of these dual inhibitors can be crucial. A single dual molecule could induce a synergy of antitumor activity, while increasing the effectiveness and reducing the toxicity of the classical combo treatments currently used in chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Indolizines/pharmacology , Phenothiazines/pharmacology , Tubulin Modulators/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Binding Sites , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Farnesyltranstransferase/chemistry , Farnesyltranstransferase/metabolism , Humans , Indolizines/chemical synthesis , Indolizines/metabolism , Molecular Docking Simulation , Molecular Structure , Phenothiazines/chemical synthesis , Phenothiazines/metabolism , Protein Binding , Structure-Activity Relationship , Tubulin/chemistry , Tubulin/metabolism , Tubulin Modulators/chemical synthesis , Tubulin Modulators/metabolism
2.
Bioorg Med Chem ; 24(22): 6021-6030, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27707624

ABSTRACT

The phenothiazine group has been identified as a suitable A ring in the structure of tubulin polymerization inhibitors. In our search to identify more potent inhibitors, a study of different isosteric tricyclic groups as new potential A rings was first realized and permitted to identify 1-azaphenothiazine and iminodibenzyl as favorable modulations providing compounds with improved activity against tubulin. An investigation of the methylene group as the connector between the A and B rings revealed that the "CH2" bridge was tolerated, improving the biological potency when the A unit was of phenothiazine, 1-azaphenothiazine or iminodibenzyl type. Molecules 6-8 and 12 showed increased biological activity in comparison to parent phenstatin 2 on COLO 205 colon cancer cell line. The most antineoplastic agent in the current study was phenothiazine 5 displaying a GI50 of 25nM against the melanoma MDA-MB-435 cell line.


Subject(s)
Antineoplastic Agents/pharmacology , Phenothiazines/pharmacology , Tubulin/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Phenothiazines/chemical synthesis , Phenothiazines/chemistry , Polymerization/drug effects , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 26(15): 3730-4, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27282741

ABSTRACT

A new family of indolizine-chalcones was designed, synthesized and screened for the inhibitory potential on human farnesyltransferase in vitro to identify potent antitumor agents. The most active compound was phenothiazine 2a, exhibiting an IC50 value in the low nanomolar range, similar to that of known FTI-276, highly potent farnesyltransferase inhibitor. The newly synthesized indolizine-chalcones 2a-d constitute the most efficient inhibitors of farnesyltransferase bearing a phenothiazine unit known to date.


Subject(s)
Chalcones/pharmacology , Enzyme Inhibitors/pharmacology , Farnesyltranstransferase/antagonists & inhibitors , Indolizines/pharmacology , Chalcones/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Farnesyltranstransferase/metabolism , Humans , Indolizines/chemistry , Molecular Structure , Structure-Activity Relationship
4.
Bioorg Med Chem ; 24(10): 2307-17, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27073050

ABSTRACT

New phenothiazine derivatives 6-20 have been designed, synthesized and evaluated in vitro for their ability to inhibit tubulin polymerization and antiproliferative activity against 60 cancer cell lines, including several multi-drug resistant (MDR) tumor cell lines. The phenothiazine unit may successfully replace the classical 3,4,5-trimethoxyphenyle A ring of parent combretastatin A-4 or phenstatin, confirming previous studies. The most promising structural modulations have been realized on the B ring, the 2'-fluoro-4'-methoxy substitution in compound 6 and the 2'-trifluoromethyl-4'-methoxy substitution in compound 7 providing the best antitubulin and antitumor activity in the current study. Compounds 6-8 and 16 exhibited more important cell growth inhibition than parent phenstatin 2 on human colon Duke's type D, colorectal adenocarcinoma COLO 205 and on human kidney adenocarcinoma A498 cell lines. 10-Methylphenothiazine derivatives 19 and 20 did not show biological activity but exerted bright fluorescence and solvatochromism effects. These molecules deserve further chemical efforts in order to provide valuable tools for biophysical studies.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Phenothiazines/chemistry , Phenothiazines/pharmacology , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Neoplasms/drug therapy , Structure-Activity Relationship , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...