Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microrna ; 12(3): 227-232, 2023.
Article in English | MEDLINE | ID: mdl-37565555

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) belong to small non-coding RNAs that coordinate the expression of cellular genes at the post-transcriptional level. The hypothalamus is a key regulator of homeostasis, biological rhythms and adaptation to different environmental factors. It also participates in the aging regulation. Variations in miRNA expression in the hypothalamus can affect the aging process. OBJECTIVE: Our objective of this study is to examine the expression of miR-200a-3p, miR-200b-3p, miR-200c-3p in the dorsomedial (DMN), ventromedial (VMN) and arcuate (ARN) nuclei of the hypothalamus in male and female rats during aging. METHODS: The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p in DMN, VMN and ARN was studied by qPCR-RT. The results were presented using the 2-ΔΔCq algorithm. RESULTS: The expression of miR-200a-3p, miR-200b-3p, miR-200c-3p microRNAs decreases with aging in the DMN of males and in the VMN of females. The level of miR-200b-3p expression decreased in aged males in the VMN and females in the DMN. The expression of miR-200c-3p declined in aged males in the ARN and in females in the DMN. The expression of miR-200a-3p, miR-200b-3p, and miR-200c-3p did not change in females in the ARN in aging. CONCLUSION: We found a decrease in the expression of members of the miR-200a-3p, miR-200b-3p, and miR-200c-3p in the tuberal hypothalamic nuclei and their sex differences in aging rats.


Subject(s)
Aging , Hypothalamus , MicroRNAs , Animals , Female , Male , Rats , MicroRNAs/genetics
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362250

ABSTRACT

The hypothalamus is a primary regulator of homeostasis, biological rhythms and adaptation to different environment factors. It also participates in the aging regulation. The expression of neurons containing Lin28 was studied by immunohistochemistry in male rats aged 2, 6, 12, and 24 months in the tuberal region of the rat hypothalamus. We have shown for the first time the presence of Lin28-immunoreactive (IR) neurons in the ventromedial nucleus (VMH) and their absence in the dorsomedial and arcuate nuclei in all studied animals. With aging, the percentage of Lin28-IR neurons increases from 37 ± 4.7 in 2-month-old rat until 76 ± 4.6 in 6-month-old and further decreases to 41 ± 7.3 in 12-month-old rat and 28 ± 5.5 in 24-month-old rats. Many VMH Lin28-IR neurons colocalized components of insulin signaling including mTOR, Raptor, PI3K and Akt. The percentage of Lin28/Akt-IR neurons was maximal in 6-month-old and 1-year-old rats compared to 2-month-old and 2-year-old animals. The proportion of Lin28/PI3K-IR neurons significantly increased from 77 ± 1.2 in 2-month-old rat until 99 ± 0.3 in 24-month-old rats and 96-99% of Lin28-IR neurons colocalized mTOR and mTORC1 component Raptor without statistically significant differences in all studied age groups. Thus, Lin28 expresses only in the VMH neurons of the tuberal nuclei of the hypothalamus and the Lin 28 expression changes during the development together with the components of PI3K-Akt-mTOR signaling.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Male , Rats , Arcuate Nucleus of Hypothalamus/metabolism , Hypothalamus/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , RNA-Binding Proteins
3.
Materials (Basel) ; 15(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35207960

ABSTRACT

Photoluminescence in a double heterostructure based on a ternary InAsSb solid solution was observed in the mid-infrared range of 2.5-4 µm. A range of compositions of the InAs1-ySby ternary solid solution has been established, where the energy resonance between the band gap and the splitting-off band in the valence band of the semiconductor can be achieved. Due to the impact of nonradiative Auger recombination processes, different temperature dependence of photoluminescence intensity was found for the barrier layer and the narrow-gap active region, respectively. It was shown that efficient high-temperature photoluminescence can be achieved by suppressing the nonradiative Auger recombination (CHHS) process. Increased temperature, for which the energy gap is lower than the split-off band energy, leads to violation of the resonance condition in narrow gap antimonide compounds, which explains the observed phenomenon. This finding might influence future application of the investigated material systems in mid-infrared emitters used for, e.g., optical gas sensing.

4.
Anal Biochem ; 641: 114565, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35074320

ABSTRACT

Polymerase chain reaction (PCR) is the most widely used method for nucleic acids amplification. To date, a huge number of versatile PCR techniques have been developed. One of the relevant goals is to shorten PCR duration, which can be achieved in several ways. Here, we report on the results regarding nucleic acids amplification by convective PCR (cPCR) in standard 0.2 ml polypropylene microtubes. The following conditions were found to be optimal for such amplification: 1) 70 µl reaction volume, 2) the supply of external temperature 145°Ð¡ for the denaturation zone and 0°Ð¡ for the annealing zone, 3) ∼30° inclination of the microtube main axis, 4) the use of nearby primers, and 5) duration of the reaction 15-20 min. At these conditions, the amplification products are accumulated in an amount sufficient to be registered by gel electrophoresis, and high sensitivity of the reaction comparable to that of conventional PCR is achieved. cPCR provided the reliable detection of SARS-CoV-2 coronavirus RNA isolated from nasopharyngeal swabs of COVID-19 patients.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Polymerase Chain Reaction/instrumentation , SARS-CoV-2/isolation & purification , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , COVID-19 Nucleic Acid Testing/methods , Convection , Humans , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/methods , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Temperature , Time Factors
5.
Neurosci Lett ; 762: 136168, 2021 09 25.
Article in English | MEDLINE | ID: mdl-34389479

ABSTRACT

The hypothalamus is a vital brain center that is participated in the integration of the endocrine and nervous systems and control of the homeostasis and aging. Spontaneous firing activity from single neurons of the dorsomedial hypothalamic nucleus (DMN) was studied extracellularly in vivo in urethane-anaesthetized rats. The discharge patterns of the majority of DMN neurons were irregular, including periods of relatively stable activity interrupted by pauses. Based on the features of interval interspike histogram, we have selected neurons with an irregular arrhythmic activity (50% in young, 46% in adult and 44% in aged rats), with a constant rhythmic activity (18% of neurons in young, 19% in adult and 23% in aged rats), with a wide interspike interval distribution (22% in young, 26% in adult and 25% in aged rats) and cells with bursts of two or three spikes (10% in young, 9% in adult and 8% in aged rats). The firing rate of DMN neurons was 2.5 ± 0.12 Hz in young and 2.4 ± 0.21 Hz in adult rats and significantly decreased to 1.8 ± 0.17 Hz in aged rats.


Subject(s)
Aging/physiology , Dorsomedial Hypothalamic Nucleus/physiology , Neurons/physiology , Animals , Male , Rats , Rats, Wistar
6.
Anat Rec (Hoboken) ; 304(5): 1094-1104, 2021 05.
Article in English | MEDLINE | ID: mdl-33040447

ABSTRACT

The hypothalamus is involved in the regulation of rhythms, autonomic, endocrine, and behavioral functions and may also participate in aging development and control. The aim of this work was to study the expression of calbindin (CB) and calretinin (CR) in the ventromedial (VMH) and dorsomedial (DMH) hypothalamic nuclei in young and old rats of both sexes by immunohistochemistry and western blotting. In young animals, the largest number of CB-immunoreactive (IR) neurons was detected in the ventral part of DMH (DMHv) and smaller percentage was found in its dorsal part (DMHd), in the dorsomedial part of the VMH (VMHdm) and in the ventrolateral part of the VMH (VMHvl). In aged animals, the percentage of CB-IR neurons significantly decreased in all studied nuclei, including DMHv, DMHd, VMHdm and VMHvl. CR-IR neurons were found in moderate number in the DMHv, DMHd, VMHdm and VMHvl of young rats. In aged rats, the percentage of CR-IR neurons significantly increased in the DMHv, DMHd, VMHdm and VMHvl. Less than one third of IR neurons colocalized CB and CR in young and aged rats. The expression of CB significantly decreased, and the expression of CR significantly increased in the DMH and VMH during aging by western blot analysis. Thus, there are opposite changes of the calcium-binding proteins expression in the hypothalamic nuclei involved in the metabolic and sexual regulation during aging.


Subject(s)
Aging/metabolism , Calbindin 2/metabolism , Calbindins/metabolism , Dorsomedial Hypothalamic Nucleus/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Female , Male , Neurons/metabolism , Rats
7.
Nitric Oxide ; 100-101: 1-6, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32283261

ABSTRACT

The hypothalamus is the most important integrator of autonomic and endocrine regulation in the body and it also has a fundamental role in ageing development and lifespan control. In order to better understand the role of NO-ergic system in the hypothalamic regulation of ageing, the purpose of this study was to investigate the expression of neuronal nitric oxide synthase (nNOS) in the arcuate (ARC), ventromedial (VMH) and dorsomedial (DMH) hypothalamic nuclei in young (2-3-month-old) and old (24-month-old) male and female rats using immunohistochemistry and western blot analysis. In young animals, only single nNOS-immunoreactive (IR) neurons were detected in ARC, and nNOS-IR neurons were found in the VMH (19 ± 3.2% in females and 14.5 ± 2.6% in males) and DMH (17 ± 4.0% in females and 21 ± 2.8% in males). In aged animals, the number of nNOS-IR neurons increased in all studied nuclei, including ARC (36 ± 3.1% in females and 33.5 ± 3.7% in males), VMH (83 ± 4.3% in females and 58 ± 2.1% in males) and DMH (57 ± 1.9% in females and 54 ± 1.8% in males). The expression of nNOS also significantly increased in the ARC, VMH and DMH during ageing by western blot analysis. In conclusion, ageing is accompanied by increasing of nNOS expression in the hypothalamus and this process is related to regions involved in the control of feeding behavior.


Subject(s)
Aging/metabolism , Arcuate Nucleus of Hypothalamus/metabolism , Dorsomedial Hypothalamic Nucleus/metabolism , Nitric Oxide Synthase Type I/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Animals , Female , Immunohistochemistry , Male , Neurons/metabolism , Rats
8.
Cell Tissue Res ; 375(2): 345-357, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30267140

ABSTRACT

To gain a better understanding of the neuroplasticity of sympathetic neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in sympathetic preganglionic neurons (SPN) in the spinal cord (Th2 segment) of female Wistar rats at different ages (newborn, 10-, 20-, 30-day-old; 2-, 6-month-old; 3-year-old). In all age groups, the majority of nNOS-immunoreactive (IR) neurons was observed in the nucleus intermediolateralis thoracolumbalis pars principalis. In the first month, the proportion of nNOS-IR neurons decreased significantly from 92 ± 3.4% in newborn to 55 ± 4.6% in 1-month-old, while the number of choline acetyltransferase (ChAT)-IR neurons increased from 74 ± 4.2% to 99 ± 0.3% respectively. Decreasing nNOS expression in the first 10 days of life was also confirmed by western blot analysis. Some nNOS-IR SPN also colocalized calbindin (CB) and cocaine and amphetamine-regulated transcript (CART). The percentage of NOS(+)/CB(-) SPN increased from 23 ± 3.6% in 10-day-old to 36 ± 4.2% in 2-month-old rats. Meanwhile, the proportion of NOS(+)/CART(-) neurons decreased from 82 ± 4.7% in newborn to 53 ± 6.1% in 1-month-old rats. The information provided here will also serve as a basis for future studies investigating the mechanisms of autonomic neuron development.


Subject(s)
Autonomic Fibers, Preganglionic/metabolism , Nitric Oxide Synthase Type I/metabolism , Sympathetic Nervous System/cytology , Thoracic Vertebrae/cytology , Animals , Animals, Newborn , Calbindins/metabolism , Choline O-Acetyltransferase/metabolism , Female , Nerve Tissue Proteins/metabolism , Rats, Wistar , Spinal Cord Lateral Horn/metabolism
9.
Cell Mol Neurobiol ; 37(7): 1257-1267, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28008568

ABSTRACT

Calbindin D28 K (CB) and calretinin (CR) are the members of the EF-hand family of calcium-binding proteins that are expressed in neurons and nerve fibers of the enteric nervous system. CB and CR are expressed differentially in neuronal subpopulations throughout the central and peripheral nervous systems and their expression has been used to selectively target specific cell types and isolate neuronal networks. The present study presents an immunohistochemical analysis of CB and CR in the enteric ganglia of small intestine in rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 60-day-old, 1-year-old, and 2-year-old). The data obtained suggest a number of age-dependent changes in CB and CR expression in the myenteric and submucous plexuses. In the myenteric plexus, the lowest percentage of CB-immunoreactive (IR) and CR-IR neurons was observed at birth, after which the number of IR cells increased in the first 10 days of life. In the submucous plexus, CB-IR and CR-IR neurons were observed from 10-day-old onwards. The percentage of CR-IR and CB-IR neurons increased in the first 2 months and in the first 20 days, respectively. In all animals, the majority of the IR neurons colocalized CR and CB. From the moment of birth, the mean of the cross-sectional area of the CB-IR and CR-IR neuronal profiles was larger than that of CB- and CR-negative cells.


Subject(s)
Calbindin 2/biosynthesis , Calbindins/biosynthesis , Enteric Nervous System/metabolism , Ganglia/metabolism , Neurons/metabolism , Age Factors , Animals , Animals, Newborn , Calbindin 2/analysis , Calbindins/analysis , Enteric Nervous System/chemistry , Enteric Nervous System/growth & development , Ganglia/chemistry , Ganglia/growth & development , Neurons/chemistry , Rats
10.
Neuropeptides ; 55: 47-54, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26589184

ABSTRACT

Neuropeptide Y (NPY) plays a trophic role in the nervous and vascular systems and in cardiac hypertrophy. However, there is no report concerning the expression of NPY and its receptors in the heart during postnatal development. In the current study, immunohistochemistry and Western blot analysis was used to label NPY, and Y1R, Y2R, and Y5R receptors in the heart tissue and intramural cardiac ganglia from rats of different ages (newborn, 10 days old, 20 days old, 30 days old, 60 days old, 1 year old, and 2 years old).The obtained data suggest age-dependent changes of NPY-mediated heart innervation. The density of NPY-immunoreactive (IR) fibers was the least in newborn animals and increased in the first 20 days of life. In the atria of newborn and 10-day-old rats, NPY-IR fibers were more abundant compared with the ventricles. The vast majority of NPY-IR fibers also contained tyrosine hydroxylase, a key enzyme in catecholamine synthesis.The expression of Y1R increased between 10 and 20 days of life. Faint Y2R immunoreactivity was observed in the atria and ventricles of 20-day-old and older rats. In contrast, the highest level of the expression of Y5R was found in newborn pups comparing with more adult rats. All intramural ganglionic neurons were also Y1R-IR and Y5R-IR and Y2R-negative in all studied animals.Thus, the increasing of density of NPY-containing nerve fibers accompanies changes in relation of different subtypes of NPY receptors in the heart during development.


Subject(s)
Heart/innervation , Neuropeptide Y/metabolism , Animals , Animals, Newborn , Ganglia, Sympathetic/metabolism , Immunohistochemistry/methods , Neurons/metabolism , Rats, Wistar , Receptors, Neuropeptide Y/metabolism , Tyrosine 3-Monooxygenase/metabolism
11.
Brain Res ; 1618: 212-21, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26054303

ABSTRACT

To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.


Subject(s)
Capsaicin/pharmacology , Ganglia, Sensory/cytology , Gene Expression Regulation, Developmental/drug effects , Neurons/drug effects , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Sensory System Agents/pharmacology , Age Factors , Animals , Animals, Newborn , Female , Male , Plant Lectins/metabolism , Pregnancy , Rats , Rats, Wistar
12.
Int J Dev Neurosci ; 40: 76-84, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25490547

ABSTRACT

Expression of vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT) and calcitonin gene-related peptide (CGRP) in the sympathetic ganglia was investigated by immunohistochemistry in the superior cervical ganglion (SCG), stellate ganglion (SG) and celiac ganglion (CG) from cats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old and 2-month-old). Non-catecholaminergic TH-negative VIP-immunoreactive (IR) and nNOS-IR sympathetic ganglionic neurons are present from the moment of birth. In all studied age groups, substantial populations of VIP-IR (up to 9.8%) and nNOS-IR cells (up to 8.3%) was found in the SG, with a much smaller population found in the SCG (<1%) and only few cells observed in the CG. The percentage of nNOS-IR and VIP-IR neurons in the CG and SCG did not significantly change during development. The proportion of nNOS-IR and VIP-IR neuron profiles in the SG increased in first 20 days of life from 2.3±0.15% to 8.3±0.56% and from 0.3±0.05% to 9.2±0.83%, respectively. In the SG, percentages of nNOS-IR sympathetic neurons colocalizing VIP increased in the first 20 days of life. ChAT-IR and CGRP-IR neurons were not observed in the sympathetic ganglia of newborn animals and did not appear until 10 days after birth. In the SG of newborn and 10-day-old kittens, the majority of NOS-IR neurons were calbindin (CB)-IR, whereas in the SCG and CG of cats of all age groups and in the SG of 30-day-old and older kittens, the vast majority of NOS-IR neurons lacked CB. We conclude that the development of various non-catecholaminergic neurons in different sympathetic ganglia has its own time dynamics and is concluded at the end of the second month of life.


Subject(s)
Ganglia, Sympathetic/cytology , Ganglia, Sympathetic/growth & development , Gene Expression Regulation, Developmental/physiology , Neurons/metabolism , Age Factors , Animals , Animals, Newborn , Calcitonin Gene-Related Peptide/metabolism , Cats , Choline O-Acetyltransferase/metabolism , Female , Male , Nerve Tissue Proteins/metabolism , Nitric Oxide Synthase/metabolism , Tyrosine 3-Monooxygenase/metabolism , Vasoactive Intestinal Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...