Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry (Mosc) ; 88(4): 539-550, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37080939

ABSTRACT

Among the responses in the early stages of stroke, activation of neurodegenerative and proinflammatory processes in the hippocampus is of key importance for the development of negative post-ischemic functional consequences. However, it remains unclear, what genes are involved in these processes. The aim of this work was a comparative study of the expression of genes encoding glutamate and GABA transporters and receptors, as well as inflammation markers in the hippocampus one day after two types of middle cerebral artery occlusion (according to Koizumi et al. method, MCAO-MK, and Longa et al. method, MCAO-ML), and direct pro-inflammatory activation by central administration of bacterial lipopolysaccharide (LPS). Differences and similarities in the effects of these challenges on gene expression were observed. Expression of a larger number of genes associated with activation of apoptosis and neuroinflammation, glutamate reception, and markers of the GABAergic system changed after the MCAO-ML and LPS administration than after the MCAO-MK. Compared with the MCAO-ML, the MCAO-MK and LPS challenges caused changes in the expression of more genes involved in glutamate transport. The most pronounced difference between the responses to different challenges was the changes in expression of calmodulin and calmodulin-dependent kinases genes observed after MCAO, especially MCAO-ML, but not after LPS. The revealed specific features of the hippocampal gene responses to the two types of ischemia and a pro-inflammatory stimulus could contribute to further understanding of the molecular mechanisms underlying diversity of the post-stroke consequences both in the model studies and in the clinic.


Subject(s)
Brain Ischemia , Stroke , Rats , Animals , Lipopolysaccharides/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Calmodulin/pharmacology , Brain Ischemia/genetics , Brain Ischemia/metabolism , Hippocampus/metabolism , Stroke/metabolism , Glutamates/metabolism , Glutamates/pharmacology
2.
Biomedicines ; 10(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36551875

ABSTRACT

Recently, we have shown the differences in the early response of corticosterone and inflammatory cytokines in the hippocampus and frontal cortex (FC) of rats with middle cerebral artery occlusion (MCAO), according to the methods of Longa et al. (LM) and Koizumi et al. (KM) which were used as alternatives in preclinical studies to induce stroke in rodents. In the present study, corticosterone and proinflammatory cytokines were assessed 3 months after MCAO. The most relevant changes detected during the first days after MCAO became even more obvious after 3 months. In particular, the MCAO-KM (but not the MCAO-LM) group showed significant accumulation of corticosterone and IL1ß in both the ipsilateral and contralateral hippocampus and FC. An accumulation of TNFα was detected in the ipsilateral hippocampus and FC in the MCAO-KM group. Thus, unlike the MCAO-LM, the MCAO-KM may predispose the hippocampus and FC of rats to long-lasting bilateral corticosterone-dependent distant neuroinflammatory damage. Unexpectedly, only the MCAO-LM rats demonstrated some memory deficit in a one-trial step-through passive avoidance test. The differences between the two MCAO models, particularly associated with the long-lasting increase in glucocorticoid and proinflammatory cytokine accumulation in the limbic structures in the MCAO-KM, should be considered in the planning of preclinical experiments, and the interpretation and translation of received results.

3.
Mol Neurobiol ; 59(2): 1151-1167, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34855115

ABSTRACT

Time course of changes in neuroinflammatory processes in the dorsal and ventral hippocampus was studied during the early period after lateral fluid percussion-induced neocortical traumatic brain injury (TBI) in the ipsilateral and contralateral hemispheres. In the ipsilateral hippocampus, neuroinflammation (increase in expression of pro-inflammatory cytokines) was evident from day 1 after TBI and ceased by day 14, while in the contralateral hippocampus, it was mainly limited to the dorsal part on day 1. TBI induced an increase in hippocampal corticosterone level on day 3 bilaterally and an accumulation of Il1b on day 1 in the ipsilateral hippocampus. Activation of microglia was observed from day 7 in different hippocampal areas of both hemispheres. Neuronal cell loss was detected in the ipsilateral dentate gyrus on day 3 and extended to the contralateral hippocampus by day 7 after TBI. The data suggest that TBI results in distant hippocampal damage (delayed neurodegeneration in the dentate gyrus and microglia proliferation in both the ipsilateral and contralateral hippocampus), the time course of this damage being different from that of the neuroinflammatory response.


Subject(s)
Brain Injuries, Traumatic , Neocortex , Neuroinflammatory Diseases , Rats , Animals , Brain Injuries, Traumatic/metabolism , Cell Death , Cell Proliferation , Cytokines/metabolism , Hippocampus/metabolism , Microglia/metabolism , Neocortex/metabolism , Neuroinflammatory Diseases/metabolism
4.
Front Neurosci ; 15: 781964, 2021.
Article in English | MEDLINE | ID: mdl-34955730

ABSTRACT

Progress in treating ischemic stroke (IS) and its delayed consequences has been frustratingly slow due to the insufficient knowledge on the mechanism. One important factor, the hypothalamic-pituitary-adrenocortical (HPA) axis is mostly neglected despite the fact that both clinical data and the results from rodent models of IS show that glucocorticoids, the hormones of this stress axis, are involved in IS-induced brain dysfunction. Though increased cortisol in IS is regarded as a biomarker of higher mortality and worse recovery prognosis, the detailed mechanisms of HPA axis dysfunction involvement in delayed post-stroke cognitive and emotional disorders remain obscure. In this review, we analyze IS-induced HPA axis alterations and supposed association of corticoid-dependent distant hippocampal damage to post-stroke brain disorders. A translationally important growing point in bridging the gap between IS pathogenesis and clinic is to investigate the involvement of the HPA axis disturbances and related hippocampal dysfunction at different stages of SI. Valid models that reproduce the state of the HPA axis in clinical cases of IS are needed, and this should be considered when planning pre-clinical research. In clinical studies of IS, it is useful to reinforce diagnostic and prognostic potential of cortisol and other HPA axis hormones. Finally, it is important to reveal IS patients with permanently disturbed HPA axis. Patients-at-risk with high cortisol prone to delayed remote hippocampal damage should be monitored since hippocampal dysfunction may be the basis for development of post-stroke cognitive and emotional disturbances, as well as epilepsy.

5.
Biomedicines ; 9(12)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34944656

ABSTRACT

Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to "positive regulation of tumor necrosis factor biosynthetic process", "cell adhesion", "TNF signaling pathway", and "phagosome" as compared with non-responding ones. In contrast, positive and negative "regulation of cell proliferation" and "HIF-1 signaling pathway" mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.

6.
Int J Mol Sci ; 22(24)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34948340

ABSTRACT

Two classical surgical approaches for intraluminal filament middle cerebral artery occlusion (MCAO), the Longa et al. (LM) and Koizumi et al. methods (KM), are used as alternatives in preclinical studies to induce stroke in rodents. Comparisons of these MCAO models in mice showed critical differences between them along with similarities (Smith et al. 2015; Morris et al. 2016). In this study, a direct comparison of MCAO-KM and MCAO-LM in rats was performed. Three days after MCAO, infarct volume, mortality rate, neurological deficit, and weight loss were similar in these models. MCAO-LM rats showed an increase in ACTH levels, while MCAO-KM rats demonstrated elevated corticosterone and interleukin-1ß in blood serum. Corticosterone accumulation was detected in the frontal cortex (FC) and the hippocampus of the MCAO-KM group. IL1ß beta increased in the ipsilateral hippocampus in the MCAO-KM group and decreased in the contralateral FC of MCAO-LM rats. Differences revealed between MCAO-KM and MCAO-LM suggest that corticosterone and interleukin-1ß release as well as hippocampal accumulation is more expressed in MCAO-KM rats, predisposing them to corticosterone-dependent distant neuroinflammatory hippocampal damage. The differences between two models, particularly, malfunction of the hypothalamic-pituitary-adrenal axis, should be considered in the interpretation, comparison, and translation of pre-clinical experimental results.


Subject(s)
Corticosterone/metabolism , Disease Models, Animal , Frontal Lobe/metabolism , Hippocampus/metabolism , Infarction, Middle Cerebral Artery/complications , Inflammation , Stroke/etiology , Animals , Frontal Lobe/pathology , Hippocampus/pathology , Male , Rats , Rats, Wistar , Stroke/metabolism , Stroke/pathology
7.
Biochemistry (Mosc) ; 86(6): 693-703, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34225592

ABSTRACT

Differential effect of the neonatal proinflammatory stress (NPS) on the development of neuroinflammation in the hippocampus and induction of the depressive-like behavior in juvenile and adult male and female rats was studied. NPS induction by bacterial lipopolysaccharide in the neonatal period upregulated expression of the Il6 and Tnf mRNAs accompanied by the development of depressive-like behavior in the adult male rats. NPS increased expression of the mRNAs for fractalkine and its receptor in the ventral hippocampus of the juvenile male rats, but did not affect expression of mRNAs for the proinflammatory cytokines and soluble form of fractalkine. NPS downregulated expression of fractalkine mRNA in the dorsal hippocampus of juvenile males. No significant effects of NPS were found in the female rats. Therefore, the NPS induces long-term changes in the expression of neuroinflammation-associated genes in different regions of the hippocampus, which ultimately leads to the induction of neuroinflammation and development of depressive-like behavior in male rats.


Subject(s)
Chemokine CX3CL1/genetics , Depression/etiology , Hippocampus/metabolism , Inflammation/metabolism , Interleukin-6/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Animals, Newborn , CX3C Chemokine Receptor 1/genetics , Depression/genetics , Depression/metabolism , Depression/physiopathology , Female , Gene Expression Regulation , Hippocampus/pathology , Hippocampus/physiopathology , Inflammation/chemically induced , Inflammation/genetics , Lipopolysaccharides/toxicity , Male , Rats , Sex Characteristics
8.
Physiol Behav ; 80(5): 647-55, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14984798

ABSTRACT

Amyloid beta-peptide (Abeta) plays an important role in the pathophysiology of Alzheimer's disease. The relationship between amnesia induced by central administration of aggregated Abeta(25-35) and neurodegeneration in the hippocampus was investigated. One month after a single intracerebroventricular injection of Abeta(25-35) (15 nmol), male Wistar rats were tested in an eight-arm radial maze. A quantitative evaluation of cell number in hippocampal regions was carried out on H&E-stained brain sections of rats used in the behavioral study. Indices of free radical-mediated processes in the hippocampus were evaluated in additional groups of animals 1, 3, 5, and 30 days after surgery. Abeta(25-35) induced impairments of working and reference memory (RM) as well as neurodegeneration in the CA1 but not in the CA3 field of the hippocampus. A significant correlation between both reference and working memory (WM) impairments and the neuronal cell loss in the hippocampal CA1 region was demonstrated. A gradually developing oxidative stress was evident in the hippocampus of rats treated with Abeta(25-35) as indicated by the increase in 2-thiobarbituric acid (TBARS) reactive substances and superoxide generation. These data suggest the involvement of oxidative stress in Abeta(25-35)-induced neurodegeneration and a relation between memory impairment and neurodegeneration in the CA1 subfield of the hippocampus.


Subject(s)
Amyloid beta-Peptides/adverse effects , Hippocampus/drug effects , Hippocampus/pathology , Memory Disorders/physiopathology , Memory/drug effects , Neurons/drug effects , Peptide Fragments/adverse effects , Animals , Cell Death , Male , Maze Learning/drug effects , Memory Disorders/chemically induced , Memory Disorders/pathology , Neurons/pathology , Oxidative Stress/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...