Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 122(12): 2418-25, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21652261

ABSTRACT

OBJECTIVE: Adapting movements to a visual rotation involves the activation of right posterior parietal areas. Further performance improvement requires an increase of slow wave activity in subsequent sleep in the same areas. Here we ascertained whether a post-learning trace is present in wake EEG and whether such a trace is influenced by sleep slow waves. METHODS: In two separate sessions, we recorded high-density EEG in 17 healthy subjects before and after a visuomotor rotation task, which was performed both before and after sleep. High-density EEG was recorded also during sleep. One session aimed to suppress sleep slow waves, while the other session served as a control. RESULTS: After learning, we found a trace in the eyes-open wake EEG as a local, parietal decrease in alpha power. After the control night, this trace returned to baseline levels, but it failed to do so after slow wave deprivation. The overnight change of the trace correlated with the dissipation of low frequency (<8 Hz) NREM sleep activity only in the control session. CONCLUSIONS: Visuomotor learning leaves a trace in the wake EEG alpha power that appears to be renormalized by sleep slow waves. SIGNIFICANCE: These findings link visuomotor learning to regional changes in wake EEG and sleep homeostasis.


Subject(s)
Alpha Rhythm , Learning/physiology , Psychomotor Performance/physiology , Sleep/physiology , Adult , Female , Humans , Male , Young Adult
2.
Arch Ital Biol ; 148(3): 279-88, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21175014

ABSTRACT

We have previously shown that, in early stages of Parkinson's disease (PD), patients with higher reaction times are also more impaired in visual sequence learning, suggesting that movement preparation shares resources with the learning of visuospatial sequences. Here, we ascertained whether, in patients with PD, the pattern of the neural correlates of attentional processes of movement planning predict sequence learning and working memory abilities. High density Electroencephalography (EEG, 256 electrodes) was recorded in 19 patients with PD performing reaching movements in a choice reaction time paradigm. Patients were also tested with Digit Span and performed a visuomotor sequence learning task that has an important declarative learning component. We found that attenuation of alpha/beta oscillatory activity before the stimulus presentation in frontoparietal regions significantly correlated with reaction time in the choice reaction time task, similarly to what we had previously found in normal subjects. In addition, such activity significantly predicted the declarative indices of sequence learning and the scores in the Digit Span task. These findings suggest that some motor and non motor PD signs might have common neural bases, and thus, might have a similar response to the same behavioral therapy. In addition, these results might help in designing and testing the efficacy of novel rehabilitative approaches to improve specific aspects of motor performance in PD and other neurological disorders.


Subject(s)
Attention/physiology , Movement/physiology , Parkinson Disease/pathology , Psychomotor Performance/physiology , Aged , Brain Mapping , Choice Behavior/physiology , Electroencephalography/methods , Evoked Potentials/physiology , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Parkinson Disease/physiopathology , Reaction Time/physiology , Statistics as Topic
3.
Parkinsonism Relat Disord ; 14(6): 457-64, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18316233

ABSTRACT

Learning deficits may be part of the early symptoms of Huntington's disease (HD). Here we characterized implicit and explicit aspects of sequence learning in 11 pre-symptomatic HD gene carriers (pHD) and 11 normal controls. Subjects moved a cursor on a digitizing tablet and performed the following tasks: SEQ: learning to anticipate the appearance of a target sequence in two blocks; VSEQ: learning a sequence by attending to the display without moving for one block, and by moving to the sequence in a successive block (VSEQ test). Explicit learning was measured with declarative scores and number of anticipatory movements. Implicit learning was measured as a strategy change reflected in movement time. By the end of SEQ, pHD had a significantly lower number of correct anticipatory movements and lower declarative scores than controls, while in VSEQ and VSEQ test these indices improved. During all three tasks, movement time changed in controls, but not in pHD. These results suggest that both explicit and implicit aspects of sequence learning may be impaired before the onset of motor symptoms. However, when attentional demands decrease, explicit, but not implicit, learning may improve.


Subject(s)
Huntington Disease/psychology , Serial Learning/physiology , Adult , Cognition/physiology , Data Interpretation, Statistical , Female , Humans , Male , Memory/physiology , Memory, Short-Term/physiology , Middle Aged , Neuropsychological Tests , Psychomotor Performance/physiology , Space Perception/physiology , Verbal Learning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...