Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37421080

ABSTRACT

In recent years, Micro-Electro-Mechanical Systems (MEMS) technology has had an impressive impact in the field of acoustic transducers, allowing the development of smart, low-cost, and compact audio systems that are employed in a wide variety of highly topical applications (consumer devices, medical equipment, automotive systems, and many more). This review, besides analyzing the main integrated sound transduction principles typically exploited, surveys the current State-of-the-Art scenario, presenting the recent performance advances and trends of MEMS microphones and speakers. In addition, the interface Integrated Circuits (ICs) needed to properly read the sensed signals or, on the other hand, to drive the actuation structures are addressed with the aim of offering a complete overview of the currently adopted solutions.

2.
Micromachines (Basel) ; 13(6)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35744547

ABSTRACT

This paper presents a detailed analysis of a micromachined thermopile detector featuring high responsivity and a versatile mosaic structure, based on 128 60 µm × 60 µm pixels connected in series and/or in parallel. The mosaic structure is based on the one employed for the thermal sensor known as TMOS, which consists of a CMOS-SOI transistor embedded in a suspended and thermally isolated absorbing membrane, released through microelectro mechanical system (MEMS) post-processing. Two versions of the thermopile detector, featuring different series/parallel connections, are presented and were experimentally characterized. The most performant of the two achieved 2.7 × 104 V/W responsivity. The thermopile sensors' performances are compared to that of the TMOS sensor, adopting different configurations, and their application as proximity detectors was verified through measurements.

3.
Micromachines (Basel) ; 12(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546478

ABSTRACT

The worldwide spread of COVID-19 has forced us to adapt to a new way of life made of social distancing, avoidance of physical contact and temperature checks before entering public places, in order to successfully limit the virus circulation. The role of technology has been fundamental in order to support the required changes to our lives: thermal sensors, in particular, are especially suited to address the needs arisen during the pandemic. They are, in fact, very versatile devices which allow performing contactless human body temperature measurements, presence detection and people counting, and automation of appliances and systems, thus avoiding the need to touch them. This paper reviews the theory behind thermal detectors, considering the different types of sensors proposed during the last ten years, while focusing on their possible employment for COVID-19 related applications.

4.
Sensors (Basel) ; 19(18)2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31527508

ABSTRACT

This paper presents a sensor-readout circuit system suitable for presence detection. The sensor consists of a miniaturized polysilicon thermopile, realized employing MEMS micromachining by STMicroelectronics, featuring a responsivity value equal to 180 V/W, with 13 ms response time. The readout circuit is implemented in a standard 130-nm CMOS process. As the sensor output signal behaves substantially as a DC, the interface circuit employs the chopper technique in order to minimize offset and noise contributions at low frequency, achieving a measured input referred offset standard deviation equal to 1.36 µ V. Measurements show that the presented system allows successfully detecting the presence of a person in a room standing at 5.5 m from the sensor. Furthermore, the correct operation of the system with moving targets, considering people either walking or running, was also demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...