Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 22(10): 3518-28, 2016 10.
Article in English | MEDLINE | ID: mdl-27185612

ABSTRACT

We present a new methodology for fitting nonparametric shape-restricted regression splines to time series of Landsat imagery for the purpose of modeling, mapping, and monitoring annual forest disturbance dynamics over nearly three decades. For each pixel and spectral band or index of choice in temporal Landsat data, our method delivers a smoothed rendition of the trajectory constrained to behave in an ecologically sensible manner, reflecting one of seven possible 'shapes'. It also provides parameters summarizing the patterns of each change including year of onset, duration, magnitude, and pre- and postchange rates of growth or recovery. Through a case study featuring fire, harvest, and bark beetle outbreak, we illustrate how resultant fitted values and parameters can be fed into empirical models to map disturbance causal agent and tree canopy cover changes coincident with disturbance events through time. We provide our code in the r package ShapeSelectForest on the Comprehensive R Archival Network and describe our computational approaches for running the method over large geographic areas. We also discuss how this methodology is currently being used for forest disturbance and attribute mapping across the conterminous United States.


Subject(s)
Environmental Monitoring , Forests , Animals , Coleoptera , Fires , United States
2.
Carbon Balance Manag ; 4: 9, 2009 Oct 29.
Article in English | MEDLINE | ID: mdl-19874619

ABSTRACT

BACKGROUND: Although significant amounts of carbon may be stored in harvested wood products, the extraction of that carbon from the forest generally entails combustion of fossil fuels. The transport of timber from the forest to primary milling facilities may in particular create emissions that reduce the net sequestration value of product carbon storage. However, attempts to quantify the effects of transport on the net effects of forest management typically use relatively sparse survey data to determine transportation emission factors. We developed an approach for systematically determining transport emissions using: 1) -remotely sensed maps to estimate the spatial distribution of harvests, and 2) - industry data to determine landscape-level harvest volumes as well as the location and processing totals of individual mills. These data support spatial network analysis that can produce estimates of fossil carbon released in timber transport. RESULTS: Transport-related emissions, evaluated as a fraction of transported wood carbon at 4 points in time on a landscape in western Montana (USA), rose from 0.5% in 1988 to 1.7% in 2004 as local mills closed and spatial patterns of harvest shifted due to decreased logging on federal lands. CONCLUSION: The apparent sensitivity of transport emissions to harvest and infrastructure patterns suggests that timber haul is a dynamic component of forest carbon management that bears further study both across regions and over time. The monitoring approach used here, which draws only from widely available monitoring data, could readily be adapted to provide current and historical estimates of transport emissions in a consistent way across large areas.

3.
Ecol Appl ; 17(6): 1714-26, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17913135

ABSTRACT

Habitat classification models (HCMs) are invaluable tools for species conservation, land-use planning, reserve design, and metapopulation assessments, particularly at broad spatial scales. However, species occurrence data are often lacking and typically limited to presence points at broad scales. This lack of absence data precludes the use of many statistical techniques for HCMs. One option is to generate pseudo-absence points so that the many available statistical modeling tools can bb used. Traditional techniques generate pseudo-absence points at random across broadly defined species ranges, often failing to include biological knowledge concerning the species-habitat relationship. We incorporated biological knowledge of the species-habitat relationship into pseudo-absence points by creating habitat envelopes that constrain the region from which points were randomly selected. We define a habitat envelope as an ecological representation of a species, or species feature's (e.g., nest) observed distribution (i.e., realized niche) based on a single attribute, or the spatial intersection of multiple attributes. We created HCMs for Northern Goshawk (Accipiter gentilis atricapillus) nest habitat during the breeding season across Utah forests with extant nest presence points and ecologically based pseudo-absence points using logistic regression. Predictor variables were derived from 30-m USDA Landfire and 250-m Forest Inventory and Analysis (FIA) map products. These habitat-envelope-based models were then compared to null envelope models which use traditional practices for generating pseudo-absences. Models were assessed for fit and predictive capability using metrics such as kappa, threshold-independent receiver operating characteristic (ROC) plots, adjusted deviance (D(adj)2), and cross-validation, and were also assessed for ecological relevance. For all cases, habitat envelope-based models outperformed null envelope models and were more ecologically relevant, suggesting that incorporating biological knowledge into pseudo-absence point generation is a powerful tool for species habitat assessments. Furthermore, given some a priori knowledge of the species-habitat relationship, ecologically based pseudo-absence points can be applied to any species, ecosystem, data resolution, and spatial extent.


Subject(s)
Ecosystem , Models, Theoretical , Trees/growth & development , Animals , Birds/growth & development , Geography , Utah
4.
Environ Monit Assess ; 128(1-3): 395-410, 2007 May.
Article in English | MEDLINE | ID: mdl-17057988

ABSTRACT

The USDA Forest Service, Forest Inventory and Analysis program (FIA) recently produced a nationwide map of forest biomass by modeling biomass collected on forest inventory plots as nonparametric functions of moderate resolution satellite data and other environmental variables using Cubist software. Efforts are underway to develop methods to enhance this initial map. We explored the possibility of modeling spatial structure to make such improvements. Spatial structure in the field biomass data as well as in residuals from the map was investigated across 18 ecological zones in the Interior Western U.S. Exploratory tools included directional graphs of summary statistics, three dimensional maps, Moran's I correlograms, and variograms. Where spatial pattern was present, field and residual biomass were kriged, and predictions made for an independent test set were evaluated for improvement over predictions in the initial biomass map. While kriging has some potential benefit when analyzing the field data and exploring spatial structure, kriging residuals resulted in little or no improvement in the initial biomass map developed using Cubist software. Stationarity assumptions, variogram behavior, and appropriate model fitting strategies are discussed.


Subject(s)
Biomass , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...