Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(4-1): 044607, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198759

ABSTRACT

Clustering passive particles by active agents is a promising route for fabrication of colloidal structures. Here, we report the dynamic clustering of micrometric beads in a suspension of motile bacteria. We characterize the coarsening dynamics for various bead sizes, surface fractions, and bacterial concentrations. We show that the time scale τ for the onset of clustering is governed by the time of first encounter of diffusing beads. At large time (t≫τ), we observe a robust cluster growth as t^{1/3}, similar to the Ostwald ripening mechanism. From bead tracking measurements, we extract the short-range bacteria-induced attractive force at the origin of this clustering.


Subject(s)
Swimming , Suspensions
2.
Phys Rev E ; 106(3-1): 034404, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36266851

ABSTRACT

Aerotaxis is the ability of motile cells to navigate toward oxygen. A key question is the dependence of the aerotactic velocity with the local oxygen concentration c. Here we combine simultaneous bacteria tracking and local oxygen concentration measurements using Ruthenium encapsulated in micelles to characterize the aerotactic response of Burkholderia contaminans, a motile bacterium ubiquitous in the environment. In our experiments, an oxygen gradient is produced by the bacterial respiration in a sealed glass capillary permeable to oxygen at one end, producing a bacterial band traveling toward the oxygen source. We compute the aerotactic response χ(c) both at the population scale, from the drift velocity in the bacterial band, and at the bacterial scale, from the angular modulation of the run times. Both methods are consistent with a power-law χ∝c^{-2}, in good agreement with existing models based on the biochemistry of bacterial membrane receptors.


Subject(s)
Ruthenium , Micelles , Chemotaxis/physiology , Bacteria , Oxygen , Suspensions
3.
Article in English | MEDLINE | ID: mdl-25019876

ABSTRACT

It has been recently emphasized that the angle of maximum wave amplitude α in the wake of a disturbance of finite size can be significantly narrower than the maximum value α_{K}=sin^{-1}(1/3)≃19.47^{∘} predicted by the classical analysis of Kelvin. For axisymmetric disturbance, a simple argument based on the Cauchy-Poisson initial-value problem suggests that the wake angle decreases following a Mach-like law at large velocity, α≃Fr_{L}^{-1}, where Fr_{L}=U/sqrt[gL] is the Froude number based on the disturbance velocity U, its size L, and gravity g. In this paper we extend this analysis to the case of nonaxisymmetric disturbances, relevant to real ships. We find that, for intermediate Froude numbers, the wake angle follows an intermediate scaling law α≃Fr_{L}^{-2}, in agreement with the recent prediction of Noblesse et al. [Eur. J. Mech. B/Fluids 46, 164 (2014)]. We show that beyond a critical Froude number, which scales as A^{1/2} (where A is the length-to-width aspect ratio of the disturbance), the asymptotic scaling α≃Fr_{B}^{-1} holds, where now Fr_{B}=A^{1/2}Fr_{L} is the Froude number based on the disturbance width. We propose a simple model for this transition, and provide a regime diagram of the scaling of the wake angle as a function of parameters (A,Fr_{L}).


Subject(s)
Models, Theoretical , Motion , Pressure , Ships , Computer Simulation , Fourier Analysis
4.
Phys Rev Lett ; 102(24): 240401, 2009 Jun 19.
Article in English | MEDLINE | ID: mdl-19658983

ABSTRACT

A droplet bouncing on a vibrated bath becomes a "walker" moving at constant velocity on the interface when it couples to the surface wave it generates. Here the motion of a walker is investigated when it collides with barriers of various thicknesses. Surprisingly, it undergoes a form of tunneling: the reflection or transmission of a given incident walker is unpredictable. However, the crossing probability decreases exponentially with increasing barrier width. This shows that this wave-particle association has a nonlocality sufficient to generate a quantumlike tunneling at a macroscopic scale.

5.
Phys Rev Lett ; 86(21): 4827-30, 2001 May 21.
Article in English | MEDLINE | ID: mdl-11384358

ABSTRACT

We report new measurements of mixing of passive temperature field in a turbulent flow. The use of low temperature helium gas allows us to span a range of microscale Reynolds number, R(lambda), from 100 to 650. The exponents xi(n) of the temperature structure functions approximately r(xi(n)) are shown to saturate to xi(infinity) approximately 1.45+/-0.1 for the highest orders, n approximately 10. This saturation is a signature of statistics dominated by frontlike structures, the cliffs. Statistics of the cliffs' characteristics are performed, particularly their widths are shown to scale as the Kolmogorov length scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...