Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxins (Basel) ; 14(11)2022 11 21.
Article in English | MEDLINE | ID: mdl-36422987

ABSTRACT

Microcystins are toxic chemicals generated by certain freshwater cyanobacteria. These chemicals can accumulate to dangerous levels during harmful algal blooms. When exposed to microcystins, humans are at risk of hepatic injury, including liver failure. Here, we describe a method to detect microcystins in human plasma by using immunocapture followed by a protein phosphatase inhibition assay. At least 279 microcystins have been identified, and most of these compounds share a common amino acid, the Adda side chain. We targeted this Adda side chain using a commercial antibody and extracted microcystins from human samples for screening and analysis. To quantitate the extracted microcystins, we fortified plasma with microcystin-LR, one of the most well-studied, commonly detected, and toxic microcystin congeners. The quantitation range for the detection of microcystin in human plasma using this method is 0.030-0.50 ng/mL microcystin-LR equivalents. This method detects unconjugated and conjugated forms (cysteine and glutathione) of microcystins. Quality control sample accuracies varied between 98.9% and 114%, with a precision of 7.18-15.8%. Finally, we evaluated plasma samples from a community health surveillance project of Florida residents living or working near harmful algae blooms.


Subject(s)
Microcystins , Plasma , Humans , Biological Assay , Phosphoprotein Phosphatases
2.
J Appl Lab Med ; 5(2): 273-280, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32445395

ABSTRACT

BACKGROUND: Irradiative sterilization of clinical specimens prior to chemical laboratory testing provides a way to not only sterilize pathogens and ensure laboratorian safety but also preserve sample volume and maintain compatibility with quantitative chemical diagnostic protocols. Since the compatibility of clinical biomarkers with gamma irradiation is not well characterized, a subset of diagnostic biomarkers ranging in molecular size, concentration, and clinical matrix was analyzed to determine recovery following gamma irradiation. METHODS: Sample irradiation of previously characterized quality control materials (QCs) at 5 Mrad was carried out at the Gamma Cell Irradiation Facility at the Centers for Disease Control and Prevention (CDC) in Atlanta, GA. Following irradiation, the QCs were analyzed alongside non-irradiated QCs to determine analyte recovery between dosed and control samples. RESULTS: Biomarkers for exposure to abrin, ricin, and organophosphorus nerve agents (OPNAs) were analyzed for their stability following gamma irradiation. The diagnostic biomarkers included adducts to butyrylcholinesterase, abrine, and ricinine, respectively, and were recovered at over 90% of their initial concentration. CONCLUSIONS: The results from this pilot study support the implementation of an irradiative sterilization protocol for possible mixed-exposure samples containing both chemical and biological threat agents (mixed CBTs). Furthermore, irradiative sterilization significantly reduces a laboratorian's risk of infection from exposure to an infectious agent without compromising chemical diagnostic testing integrity, particularly for diagnostic assays in which the chemical analyte has been shown to be fully conserved following a 5 Mrad irradiative dose.


Subject(s)
Biomarkers , Gamma Rays , Sterilization , Alkaloids/analysis , Alkaloids/chemistry , Biomarkers, Pharmacological/analysis , Biomarkers, Pharmacological/chemistry , Chemical Safety , Chromatography, High Pressure Liquid , Consumer Product Safety , Equipment Safety , Indole Alkaloids/analysis , Indole Alkaloids/chemistry , Pilot Projects , Pyridones/analysis , Pyridones/chemistry , Quality Control , Radiation Dosage , Sterilization/methods
3.
Toxicol Lett ; 317: 53-58, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31560942

ABSTRACT

In 2017, the U.S. Department of Health and Human Services and the White House declared a public health emergency to address the opioid crisis (Hargan, 2017). On average, 192 Americans died from drug overdoses each day in 2017; 130 (67%) of those died specifically because of opioids (Scholl et al., 2019). Since 2013, there have been significant increases in overdose deaths involving synthetic opioids - particularly those involving illicitly-manufactured fentanyl. The U.S. Drug Enforcement Administration (DEA) estimates that 75% of all opioid identifications are illicit fentanyls (DEA, 2018b). Laboratories are routinely asked to confirm which fentanyl or other opioids are involved in an overdose or encountered by first responders. It is critical to identify and classify the types of drugs involved in an overdose, how often they are involved, and how that involvement may change over time. Health care providers, public health professionals, and law enforcement officers need to know which opioids are in use to treat, monitor, and investigate fatal and non-fatal overdoses. By knowing which drugs are present, appropriate prevention and response activities can be implemented. Laboratory testing is available for clinically used and widely recognized opioids. However, there has been a rapid expansion in new illicit opioids, particularly fentanyl analogs that may not be addressed by current laboratory capabilities. In order to test for these new opioids, laboratories require reference standards for the large number of possible fentanyls. To address this need, the Centers for Disease Control and Prevention (CDC) developed the Traceable Opioid Material§ Kits product line, which provides over 150 opioid reference standards, including over 100 fentanyl analogs. These kits were designed to dramatically increase laboratory capability to confirm which opioids are on the streets and causing deaths. The kits are free to U.S based laboratories in the public, private, clinical, law enforcement, research, and public health domains.


Subject(s)
Analgesics, Opioid/analysis , Drug Overdose/diagnosis , Fentanyl/analysis , Opioid-Related Disorders/diagnosis , Reagent Kits, Diagnostic/standards , Substance Abuse Detection/standards , Analgesics, Opioid/classification , Calibration , Drug Overdose/mortality , Fentanyl/analogs & derivatives , Fentanyl/classification , Humans , Opioid-Related Disorders/mortality , Predictive Value of Tests , Reference Standards , Reproducibility of Results , United States/epidemiology
4.
Article in English | MEDLINE | ID: mdl-30056267

ABSTRACT

Hypoglycin A (HGA) and methylenecyclopropylglycine (MCPG) are naturally-occurring amino acids known to cause hypoglycemia and encephalopathy. Exposure to one or both toxins through the ingestion of common soapberry (Sapindaceae) fruits are documented in illness outbreaks throughout the world. Jamaican Vomiting Sickness (JVS) and seasonal pasture myopathy (SPM, horses) are linked to HGA exposure from unripe ackee fruit and box elder seeds, respectively. Acute toxic encephalopathy is linked to HGA and MCPG exposures from litchi fruit. HGA and MCPG are found in several fruits within the soapberry family and are known to cause severe hypoglycemia, seizures, and death. HGA has been directly quantified in horse blood in SPM cases and in human gastric juice in JVS cases. This work presents a new diagnostic assay capable of simultaneous quantification of HGA and MCPG in human plasma, and it can be used to detect patients with toxicity from soapberry fruits. The assay presented herein is the first quantitative method for MCPG in blood matrices.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cyclopropanes/blood , Glycine/analogs & derivatives , Hypoglycins/blood , Tandem Mass Spectrometry/methods , Glycine/blood , Humans , Limit of Detection , Linear Models , Plant Poisoning , Reproducibility of Results , Sapindaceae
5.
J Anal Toxicol ; 42(9): 630-636, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29931062

ABSTRACT

Ricin and abrin are toxic ribosome-inactivating proteins found in plants. Exposure to these toxins can be detected using the biomarkers ricinine and abrine, which are present in the same plant sources as the toxins. The concentration of the biomarkers in urine and blood will be dependent upon the purification of abrin or ricin, the route of exposure, and the length of time between exposure and sample collection. Here, we present the first diagnostic assay for the simultaneous quantification of both ricinine and abrine in blood matrices. Furthermore, this is the first-ever method for the detection of abrine in blood products. Samples were processed by isotope-dilution, solid-phase extraction, protein precipitation and quantification by HPLC-MS-MS. This analytical method detects abrine from 5.00 to 500 ng/mL and ricinine from 0.300 to 300 ng/mL with coefficients of determination of 0.996 ± 0.003 and 0.998 ± 0.002 (n = 22), respectively. Quality control material accuracy was determined to have <10% relative error, and precision was within 19% relative standard deviation. The assay's time-to-first result is three hours including sample preparation. Furthermore, the method was applied for the quantification of ricinine in the blood of a patient who had intentionally ingested castor beans to demonstrate the test was fit-for-purpose. This assay was designed to support the diagnosis of ricin and abrin exposures in public health investigations.


Subject(s)
Abrin/urine , Alkaloids/urine , Forensic Toxicology/methods , Indole Alkaloids/urine , Pyridones/urine , Ricin/urine , Alkaloids/poisoning , Biomarkers/urine , Calibration , Humans , Indole Alkaloids/poisoning , Limit of Detection , Poisoning/urine , Pyridones/poisoning , Reproducibility of Results , Specimen Handling
6.
Food Chem ; 264: 449-454, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-29853400

ABSTRACT

Methylenecyclcopropylglycine (MCPG) and hypoglycin A (HGA) are naturally occurring amino acids found in various soapberry (Sapindaceae) fruits. These toxins have been linked to illnesses worldwide and were recently implicated in Asian outbreaks of acute hypoglycemic encephalopathy. In a previous joint agricultural and public health investigation, we developed an analytical method capable of evaluating MCPG and HGA concentrations in soapberry fruit arils as well as a clinical method for the urinary metabolites of the toxins. Since the initial soapberry method only analyzed the aril portion of the fruit, we present here the extension of the method to include the fruit seed matrix. This work is the first method to quantitate both MCPG and HGA concentrations in the seeds of soapberry fruit, including those collected during a public health investigation. Further, this is the first quantitation of HGA in litchi seeds as well as both toxins in mamoncillo and longan seeds.


Subject(s)
Chromatography, High Pressure Liquid , Cyclopropanes/analysis , Glycine/analogs & derivatives , Hypoglycins/analysis , Sapindus/metabolism , Tandem Mass Spectrometry , Fruit/chemistry , Fruit/metabolism , Glycine/analysis , Seeds/metabolism
7.
Sci Rep ; 5: 17198, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26606901

ABSTRACT

Phosphorylation of the nucleosides adenosine and uridine by the simple mixing and mild heating of aqueous solutions of the organic compounds with synthetic analogs of the meteoritic mineral schreibersite, (Fe,Ni)3P under slightly basic conditions (pH ~9) is reported. These results suggest a potential role for meteoritic phosphorus in the origin and development of early life.


Subject(s)
Iron Compounds/chemistry , Minerals/chemistry , Nickel/chemistry , Nucleosides/chemistry , Chromatography, High Pressure Liquid , Magnetic Resonance Spectroscopy , Phosphorylation , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...