Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38885674

ABSTRACT

OBJECTIVE: To develop a clinically relevant injectable hydrogel derived from decellularized porcine peripheral nerves and with mechanical properties comparable to native central nervous system (CNS) tissue to be used as a delivery vehicle for Schwann cell transplantation to treat spinal cord injury (SCI). APPROACH: Porcine peripheral nerves (sciatic and peroneal) were decellularized by using a sodium deoxycholate and DNase (SDD) method previously developed by our group. The decellularized nerves were delipidated using dichloromethane and ethanol solvent and then digested using pepsin enzyme to form injectable hydrogel formulations. Genipin was used as a crosslinker to enhance mechanical properties. The injectability, mechanical properties, and gelation kinetics of the hydrogels were further analyzed using rheology. Schwann cells encapsulated within the injectable hydrogel formulations were passed through a 25-gauge needle and cell viability was assessed using live/dead staining. The ability of the hydrogel to maintain Schwann cell viability against an inflammatory milieu was assessed in vitro using inflamed astrocytes co-cultured with Schwann cells. RESULTS: The SDD method effectively removes cells and retains extracellular matrix in decellularized tissues. Using rheological studies, we found that delipidation of decellularized porcine peripheral nerves using dichloromethane and ethanol solvent improves gelation kinetics and mechanical strength of hydrogels. The delipidated and decellularized hydrogels crosslinked using genipin mimicked the mechanical strength of CNS tissue. The hydrogels were found to have shear thinning properties desirable for injectable formulations and they also maintained higher Schwann cell viability during injection compared to saline controls. Using in vitro co-culture experiments, we found that the genipin-crosslinked hydrogels also protected Schwann cells from astrocyte-mediated inflammation. SIGNIFICANCE: Injectable hydrogels developed using delipidated and decellularized porcine peripheral nerves are a potential clinically relevant solution to deliver Schwann cells, and possibly other therapeutic cells, at the SCI site by maintaining higher cellular viability and increasing therapeutic efficacy for SCI treatment.

2.
NPJ Microgravity ; 9(1): 77, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37714852

ABSTRACT

Microphysiological systems provide the opportunity to model accelerated changes at the human tissue level in the extreme space environment. Spaceflight-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting in older adults, known as sarcopenia. These shared attributes provide a rationale for investigating molecular changes in muscle cells exposed to spaceflight that may mimic the underlying pathophysiology of sarcopenia. We report the results from three-dimensional myobundles derived from muscle biopsies from young and older adults, integrated into an autonomous CubeLab™, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analyses comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation. The analyses also revealed downregulated differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were downregulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides an approach to studying the cell autonomous effects of spaceflight on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. We also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLabTM payloads on the ISS.

3.
Res Sq ; 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37034730

ABSTRACT

Microgravity-induced muscle atrophy experienced by astronauts shares similar physiological changes to muscle wasting experienced by older adults, known as sarcopenia. These shared attributes provide a rationale for investigating microgravity-induced molecular changes in human bioengineered muscle cells that may also mimic the progressive underlying pathophysiology of sarcopenia. Here, we report the results of an experiment that incorporated three-dimensional myobundles derived from muscle biopsies from young and older adults, that were integrated into an autonomous CubeLabâ"¢, and flown to the International Space Station (ISS) aboard SpaceX CRS-21 in December 2020 as part of the NIH/NASA funded Tissue Chips in Space program. Global transcriptomic RNA-Seq analysis comparing the myobundles in space and on the ground revealed downregulation of shared transcripts related to myoblast proliferation and muscle differentiation for those in space. The analysis also revealed differentially expressed gene pathways related to muscle metabolism unique to myobundles derived from the older cohort exposed to the space environment compared to ground controls. Gene classes related to inflammatory pathways were uniquely modulated in flight samples cultured from the younger cohort compared to ground controls. Our muscle tissue chip platform provides a novel approach to studying the cell autonomous effects of microgravity on muscle cell biology that may not be appreciated on the whole organ or organism level and sets the stage for continued data collection from muscle tissue chip experimentation in microgravity. Thus, we also report on the challenges and opportunities for conducting autonomous tissue-on-chip CubeLab TM payloads on the ISS.

4.
Aging Cell ; 21(7): e13650, 2022 07.
Article in English | MEDLINE | ID: mdl-35653714

ABSTRACT

Microphysiological systems (MPS), also referred to as tissue chips, incorporating 3D skeletal myobundles are a novel approach for physiological and pharmacological studies to uncover new medical treatments for sarcopenia. We characterize a MPS in which engineered skeletal muscle myobundles derived from donor-specific satellite cells that model aged phenotypes are encapsulated in a perfused tissue chip platform containing platinum electrodes. Our myobundles were derived from CD56+ myogenic cells obtained via percutaneous biopsy of the vastus lateralis from adults phenotyped by age and physical activity. Following 17 days differentiation including 5 days of a 3 V, 2 Hz electrical stimulation regime, the myobundles exhibited fused myotube alignment and upregulation of myogenic, myofiber assembly, signaling and contractile genes as demonstrated by gene array profiling and localization of key components of the sarcomere. Our results demonstrate that myobundles derived from the young, active (YA) group showed high intensity immunofluorescent staining of α-actinin proteins and responded to electrical stimuli with a ~1 µm displacement magnitude compared with non-stimulated myobundles. Myobundles derived from older sedentary group (OS) did not display a synchronous contraction response. Hypertrophic potential is increased in YA-derived myobundles in response to stimulation as shown by upregulation of insulin growth factor (IGF-1), α-actinin (ACTN3, ACTA1) and fast twitch troponin protein (TNNI2) compared with OS-derived myobundles. Our MPS mimics disease states of muscle decline and thus provides an aged system and experimental platform to investigate electrical stimulation mimicking exercise regimes and may be adapted to long duration studies of compound efficacy and toxicity for therapeutic evaluation against sarcopenia.


Subject(s)
Muscle Contraction , Actinin , Humans , Muscle Contraction/physiology , Muscle Fibers, Skeletal , Muscle, Skeletal , Sarcopenia , Tissue Engineering/methods
5.
Biomaterials ; 279: 121212, 2021 12.
Article in English | MEDLINE | ID: mdl-34717196

ABSTRACT

Peripheral nerve injuries can be debilitating to motor and sensory function, with severe cases often resulting in complete limb amputation. Over the past two decades, prosthetic limb technology has rapidly advanced to provide users with crude motor control of up to 20° of freedom; however, the nerve-interfacing technology required to provide high movement selectivity has not progressed at the same rate. The work presented here focuses on the development of a magnetically aligned regenerative tissue-engineered electronic nerve interface (MARTEENI) that combines polyimide "threads" encapsulated within a magnetically aligned hydrogel scaffold. The technology exploits tissue-engineered strategies to address concerns over traditional peripheral nerve interfaces including poor axonal sampling through the nerve and rigid substrates. A magnetically templated hydrogel is used to physically support the polyimide threads while also promoting regeneration in close proximity to the electrode sites on the polyimide. This work demonstrates the utility of magnetic templating for use in tuning the mechanical properties of hydrogel scaffolds to match the stiffness of native nerve tissue while providing an aligned substrate for Schwann cell migration in vitro. MARTEENI devices were fabricated and implanted within a 5-mm-long rat sciatic-nerve transection model to assess regeneration at 6 and 12 weeks. MARTEENI devices do not disrupt tissue remodeling and show axon densities equivalent to fresh tissue controls around the polyimide substrates. Devices are observed to have attenuated foreign-body responses around the polyimide threads. It is expected that future studies with functional MARTEENI devices will be able to record and stimulate single axons with high selectivity and low stimulation regimes.


Subject(s)
Nerve Regeneration , Nerve Tissue , Animals , Axons , Electronics , Rats , Schwann Cells , Sciatic Nerve , Tissue Engineering
6.
JOR Spine ; 1(3): e1031, 2018 Sep.
Article in English | MEDLINE | ID: mdl-31463449

ABSTRACT

Total disc replacement using tissue-engineered intervertebral discs (TE-IVDs) may offer a biological alternative to treat radiculopathy caused by disc degeneration. A composite TE-IVD was previously developed and evaluated in rat tail and beagle cervical spine models in vivo. Although cell viability and tissue integration into host tissue were promising, significant implant displacement occurred at multiple spinal levels. The goal of the present study was to assess the effects of a resorbable plating system on the stiffness of motion segments and stability of tissue-engineered implants subjected to axial compression. Canine motion segments from levels C2/C3 to C5/C6 were assessed as intact (CTRL), after discectomy (Dx), with an implanted TE-IVD only (PLATE-), and with a TE-IVD combined with an attached resorbable plate (PLATE+). Segments under PLATE+ conditions fully restored separation between endplates and showed significantly higher compressive stiffness than segments under PLATE- conditions. Plated segments partially restored more than 25% of the CTRL motion segment stiffness. Plate attachment also prevented implant extrusion from the disc space at 50% compressive strain, and this effect was more significant in segments from levels C3/C4 when compared to segments from level C5/C6. These results suggest that stabilization of motion segments via resorbable plating assists TE-IVD retention in the disc space while allowing the opportunity for implants to fully integrate into the host tissue and achieve optimal restoration of spine biomechanics.

7.
PLoS One ; 12(10): e0185716, 2017.
Article in English | MEDLINE | ID: mdl-29053719

ABSTRACT

The most common reason that adults in the United States see their physician is lower back or neck pain secondary to degenerative disc disease. To date, approaches to treat degenerative disc disease are confined to purely mechanical devices designed to either eliminate or enable flexibility of the diseased motion segment. Tissue engineered intervertebral discs (TE-IVDs) have been proposed as an alternative approach and have shown promise in replacing native IVD in the rodent tail spine. Here we demonstrate the efficacy of our TE-IVDs in the canine cervical spine. TE-IVD components were constructed using adult canine annulus fibrosis and nucleus pulposus cells seeded into collagen and alginate hydrogels, respectively. Seeded gels were formed into a single disc unit using molds designed from the geometry of the canine spine. Skeletally mature beagles underwent discectomy with whole IVD resection at levels between C3/4 and C6/7, and were then divided into two groups that received only discectomy or discectomy followed by implantation of TE-IVD. Stably implanted TE-IVDs demonstrated significant retention of disc height and physiological hydration compared to discectomy control. Both 4-week and 16-week histological assessments demonstrated chondrocytic cells surrounded by proteoglycan-rich matrices in the NP and by fibrocartilaginous matrices in the AF portions of implanted TE-IVDs. Integration into host tissue was confirmed over 16 weeks without any signs of immune reaction. Despite the significant biomechanical demands of the beagle cervical spine, our stably implanted TE-IVDs maintained their position, structure and hydration as well as disc height over 16 weeks in vivo.


Subject(s)
Cervical Vertebrae/surgery , Intervertebral Disc Degeneration/surgery , Intervertebral Disc , Tissue Engineering , Animals , Collagen/metabolism , Dogs , Extracellular Matrix/metabolism , Male , Proteoglycans/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...