Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 42(8): 112960, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37556322

ABSTRACT

The small ubiquitin-like modifier (SUMO) protease SENP6 disassembles SUMO chains from cellular substrate proteins. We use a proteomic method to identify putative SENP6 substrates based on increased apparent molecular weight after SENP6 depletion. Proteins of the lamin family of intermediate filaments show substantially increased SUMO modification after SENP6 depletion. This is accompanied by nuclear structural changes remarkably like those associated with laminopathies. Two SUMO attachment sites on lamin A/C are close to sites of mutations in Emery-Driefuss and limb girdle muscular dystrophy. To establish a direct link between lamin SUMOylation and the observed phenotype, we developed proximity-induced SUMO modification (PISM), which fuses a lamin A/C targeting DARPin to a SUMO E3 ligase domain. This directly targets lamin A/C for SUMO conjugation and demonstrates that enhanced lamin SUMO modification recapitulates the altered nuclear structure manifest after SENP6 depletion. This shows SENP6 activity protects the nucleus against hyperSUMOylation-induced laminopathy-like alterations.


Subject(s)
Lamin Type A , Peptide Hydrolases , Lamin Type A/metabolism , Peptide Hydrolases/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Ubiquitin/metabolism , Cysteine Endopeptidases/metabolism , Proteomics , Sumoylation
2.
J Cell Biol ; 222(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36880596

ABSTRACT

Acute Promyelocytic Leukemia is caused by expression of the oncogenic Promyelocytic Leukemia (PML)-Retinoic Acid Receptor Alpha (RARA) fusion protein. Therapy with arsenic trioxide results in degradation of PML-RARA and PML and cures the disease. Modification of PML and PML-RARA with SUMO and ubiquitin precedes ubiquitin-mediated proteolysis. To identify additional components of this pathway, we performed proteomics on PML bodies. This revealed that association of p97/VCP segregase with PML bodies is increased after arsenic treatment. Pharmacological inhibition of p97 altered the number, morphology, and size of PML bodies, accumulated SUMO and ubiquitin modified PML and blocked arsenic-induced degradation of PML-RARA and PML. p97 localized to PML bodies in response to arsenic, and siRNA-mediated depletion showed that p97 cofactors UFD1 and NPLOC4 were critical for PML degradation. Thus, the UFD1-NPLOC4-p97 segregase complex is required to extract poly-ubiquitinated, poly-SUMOylated PML from PML bodies, prior to degradation by the proteasome.


Subject(s)
Arsenic , Leukemia, Promyelocytic, Acute , Valosin Containing Protein , Humans , Arsenic/therapeutic use , Cytoplasm , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/genetics , Proteasome Endopeptidase Complex , Transcription Factors/genetics , Ubiquitin , Valosin Containing Protein/metabolism , Oncogene Proteins, Fusion , Sumoylation
3.
Cell Death Differ ; 29(11): 2107-2122, 2022 11.
Article in English | MEDLINE | ID: mdl-35449213

ABSTRACT

NFATc3 is the predominant member of the NFAT family of transcription factors in neurons, where it plays a pro-apoptotic role. Mechanisms controlling NFAT protein stability are poorly understood. Here we identify Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, Trim39 binds and ubiquitinates NFATc3 in vitro and in cells where it reduces NFATc3 protein level and transcriptional activity. In contrast, silencing of endogenous Trim39 decreases NFATc3 ubiquitination and increases its activity, thereby resulting in enhanced neuronal apoptosis. We also show that Trim17 inhibits Trim39-mediated ubiquitination of NFATc3 by reducing both the E3 ubiquitin-ligase activity of Trim39 and the NFATc3/Trim39 interaction. Moreover, we identify Trim39 as a new SUMO-targeted E3 ubiquitin-ligase (STUbL). Indeed, mutation of SUMOylation sites in NFATc3 or SUMO-interacting motifs in Trim39 reduces NFATc3/Trim39 interaction and Trim39-induced ubiquitination of NFATc3. In addition, Trim39 preferentially ubiquitinates SUMOylated forms of NFATc3 in vitro. As a consequence, a SUMOylation-deficient mutant of NFATc3 exhibits increased stability and pro-apoptotic activity in neurons. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3.


Subject(s)
NFATC Transcription Factors , Ubiquitin-Protein Ligases , Apoptosis , NFATC Transcription Factors/metabolism , Sumoylation , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Ubiquitins/metabolism , SUMO-1 Protein/metabolism
4.
Mol Cell Proteomics ; 20: 100164, 2021.
Article in English | MEDLINE | ID: mdl-34673284

ABSTRACT

To investigate the role of SUMO modification in the maintenance of pluripotent stem cells, we used ML792, a potent and selective inhibitor of SUMO Activating Enzyme. Treatment of human induced pluripotent stem cells with ML792 resulted in the loss of key pluripotency markers. To identify putative effector proteins and establish sites of SUMO modification, cells were engineered to stably express either SUMO1 or SUMO2 with C-terminal TGG to KGG mutations that facilitate GlyGly-K peptide immunoprecipitation and identification. A total of 976 SUMO sites were identified in 427 proteins. STRING enrichment created three networks of proteins with functions in regulation of gene expression, ribosome biogenesis, and RNA splicing, although the latter two categories represented only 5% of the total GGK peptide intensity. The rest have roles in transcription and the regulation of chromatin structure. Many of the most heavily SUMOylated proteins form a network of zinc-finger transcription factors centered on TRIM28 and associated with silencing of retroviral elements. At the level of whole proteins, there was only limited evidence for SUMO paralogue-specific modification, although at the site level there appears to be a preference for SUMO2 modification over SUMO1 in acidic domains. We show that SUMO influences the pluripotent state in hiPSCs and identify many chromatin-associated proteins as bona fide SUMO substrates in human induced pluripotent stem cells.


Subject(s)
Induced Pluripotent Stem Cells/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Cell Line , Humans , Proteomics , Sumoylation
5.
Cell Death Differ ; 26(5): 902-917, 2019 05.
Article in English | MEDLINE | ID: mdl-30042493

ABSTRACT

BCL2A1 is an anti-apoptotic member of the BCL-2 family that contributes to chemoresistance in a subset of tumors. BCL2A1 has a short half-life due to its constitutive processing by the ubiquitin-proteasome system. This constitutes a major tumor-suppressor mechanism regulating BCL2A1 function. However, the enzymes involved in the regulation of BCL2A1 protein stability are currently unknown. Here, we provide the first insight into the regulation of BCL2A1 ubiquitination. We present evidence that TRIM28 is an E3 ubiquitin-ligase for BCL2A1. Indeed, endogenous TRIM28 and BCL2A1 bind to each other at the mitochondria and TRIM28 knock-down decreases BCL2A1 ubiquitination. We also show that TRIM17 stabilizes BCL2A1 by blocking TRIM28 from binding and ubiquitinating BCL2A1, and that GSK3 is involved in the phosphorylation-mediated inhibition of BCL2A1 degradation. BCL2A1 and its close relative MCL1 are thus regulated by common factors but with opposite outcome. Finally, overexpression of TRIM28 or knock-out of TRIM17 reduced BCLA1 protein levels and restored sensitivity of melanoma cells to BRAF-targeted therapy. Therefore, our data describe a molecular rheostat in which two proteins of the TRIM family antagonistically regulate BCL2A1 stability and modulate cell death.


Subject(s)
Apoptosis/genetics , Minor Histocompatibility Antigens/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif-Containing Protein 28/genetics , Ubiquitin-Protein Ligases/genetics , Cell Death/genetics , Cell Line, Tumor , Doxycycline/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glycogen Synthase Kinase 3/genetics , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation/genetics , Proteasome Endopeptidase Complex/genetics , Protein Binding/genetics , Protein Stability , Proteolysis/drug effects , Ubiquitination/genetics
6.
Cell Rep ; 25(9): 2484-2496.e9, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30485814

ABSTRACT

Although accumulating data indicate that increased α-synuclein expression is crucial for Parkinson disease (PD), mechanisms regulating the transcription of its gene, SNCA, are largely unknown. Here, we describe a pathway regulating α-synuclein expression. Our data show that ZSCAN21 stimulates SNCA transcription in neuronal cells and that TRIM41 is an E3 ubiquitin ligase for ZSCAN21. In contrast, TRIM17 decreases the TRIM41-mediated degradation of ZSCAN21. Silencing of ZSCAN21 and TRIM17 consistently reduces SNCA expression, whereas TRIM41 knockdown increases it. The mRNA levels of TRIM17, ZSCAN21, and SNCA are simultaneously increased in the midbrains of mice following MPTP treatment. In addition, rare genetic variants in ZSCAN21, TRIM17, and TRIM41 genes occur in patients with familial forms of PD. Expression of variants in ZSCAN21 and TRIM41 genes results in the stabilization of the ZSCAN21 protein. Our data thus suggest that deregulation of the TRIM17/TRIM41/ZSCAN21 pathway may be involved in the pathogenesis of PD.


Subject(s)
Carrier Proteins/metabolism , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism , Trans-Activators/metabolism , Ubiquitin-Protein Ligases/metabolism , alpha-Synuclein/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Female , Gene Expression Regulation , Humans , Kruppel-Like Transcription Factors/chemistry , Male , Mice, Inbred C57BL , Mutation/genetics , Nuclear Proteins/chemistry , Pedigree , Protein Binding , Proteolysis , Transcription, Genetic , Tripartite Motif Proteins , Ubiquitination , alpha-Synuclein/genetics
7.
Cells ; 3(2): 418-37, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24814761

ABSTRACT

Mcl-1 is an anti-apoptotic protein of the Bcl-2 family that is essential for the survival of multiple cell lineages and that is highly amplified in human cancer. Under physiological conditions, Mcl-1 expression is tightly regulated at multiple levels, involving transcriptional, post-transcriptional and post-translational processes. Ubiquitination of Mcl-1, that targets it for proteasomal degradation, allows for rapid elimination of the protein and triggering of cell death, in response to various cellular events. In the last decade, a number of studies have elucidated different pathways controlling Mcl-1 ubiquitination and degradation. Four different E3 ubiquitin-ligases (e.g., Mule, SCFß-TrCP, SCFFbw7 and Trim17) and one deubiquitinase (e.g., USP9X), that respectively mediate and oppose Mcl-1 ubiquitination, have been formerly identified. The interaction between Mule and Mcl-1 can be modulated by other Bcl-2 family proteins, while recognition of Mcl-1 by the other E3 ubiquitin-ligases and deubiquitinase is influenced by phosphorylation of specific residues in Mcl-1. The protein kinases and E3 ubiquitin-ligases that are involved in the regulation of Mcl-1 stability vary depending on the cellular context, highlighting the complexity and pivotal role of Mcl-1 regulation. In this review, we attempt to recapitulate progress in understanding Mcl-1 regulation by the ubiquitin-proteasome system.

SELECTION OF CITATIONS
SEARCH DETAIL
...