Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5492, 2023 04 04.
Article in English | MEDLINE | ID: mdl-37015949

ABSTRACT

To explore the pathways and mechanisms driving inflammation and fibrosis in stented ureters. In total, six healthy female pigs underwent cystoscopic unilateral ureteral stent insertion (6 Fr). After 14 days indwelling time, ureteral tissue was harvested in three pigs, while the remaining three pigs had their stents removed, and were recovered for 7 days. Three separate pigs served as controls. Tissue from stented and contralateral ureters was analysed histologically to evaluate tissue remodelling and classify the degree of inflammation and fibrosis, while genome, proteome and immunohistochemistry analysis was performed to assess changes at the transcriptional and translational levels. Finally, immunofluorescence was used to characterize the cell composition of the immune response and pathways involved in inflammation and fibrosis. Statistical analysis was performed using GraphPad Prism and RStudio for Welch ANOVA, Kruskal-Wallis and Dunnett's T3 multiple comparison test. Stents cause significant inflammation and fibrosis of ureters. Gene set enrichment analysis confirmed fibrotic changes and tissue proliferation and suggests that epithelial-mesenchymal transition is a driver of fibrosis. Moreover, IL-6/JAK/STAT and TNFα via NF-κB signalling might contribute to chronic inflammation promoting a profibrotic environment. Immunostaining confirmed epithelial-mesenchymal transition in the urothelium and NF-κB expression in ureters stented for 14 days. Tissue alterations do not fully recover after 7 days. Histological evaluation showed that contralateral, unstented ureters are affected by mild inflammation. Our study showed that stenting has a significant impact on the ureter. Chronic inflammation and epithelial-mesenchymal transition are drivers of fibrosis, potentially impairing ureteral functionality in the long term. Furthermore, we observed mild inflammation in contralateral, unstented ureters.


Subject(s)
Ureter , Ureteral Obstruction , Swine , Female , Animals , Ureter/pathology , Urothelium/pathology , NF-kappa B , Stents/adverse effects , Inflammation/pathology , Fibrosis , Ureteral Obstruction/pathology
2.
Eur Urol Focus ; 9(2): 371-380, 2023 03.
Article in English | MEDLINE | ID: mdl-36244955

ABSTRACT

BACKGROUND: Hydronephrosis and renal impairment may persist even after relieving an obstruction, particularly in cases of chronic obstruction. Obstruction can cause fibrotic changes of the ureter, potentially contributing to long-term kidney damage. OBJECTIVE: To characterise pathophysiological changes of obstructed ureters with focus on inflammatory responses triggering fibrosis and potential impairment of ureteral function. DESIGN, SETTING, AND PARTICIPANTS: Eighty-eight mice were randomly assigned to unilateral ureteral obstruction (UUO) for 2 d, UUO for 7 d, and UUO for 7 d followed by 8 d of recovery, or a control group (no prior surgical intervention). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Peristaltic rate was determined over 2 min by direct visualisation with a microscope, while hydronephrosis was assessed by ultrasound. Obstructed and contralateral ureters were harvested, and underwent histopathological evaluation. We quantified 44 cytokines/chemokines, and five matrix metalloproteases using Luminex technology. Cell composition was characterised via immunofluorescence. Statistical significance was assessed using Welch analysis of variance, Kruskal-Wallis test, and Dunnett's T3 multiple comparison test. RESULTS AND LIMITATIONS: Obstruction resulted in hydronephrosis and significantly impaired peristalsis. Marked fibrosis was observed in lamina propria, muscle layer, and adventitia. Connective tissue in obstructed ureters showed hyperaemia and leucocyte infiltration. Unsupervised hierarchical clustering demonstrated different cytokine/chemokine patterns between groups. Ureters obstructed for 7 d followed by recovery were notably different from other groups. Inflammatory cytokines, chemoattractants, and matrix metalloproteases increased significantly in obstructed ureters. Contralateral unobstructed ureters showed significantly increased levels of chemokines and matrix metalloproteases. Immunofluorescence confirmed activation of T cells, Th1 and Th2 cells, and M1 macrophages in obstructed and contralateral ureters, and a shift to M2 macrophages following prolonged obstruction. CONCLUSIONS: Ureteral obstruction triggers severe inflammation and fibrosis, which may irreversibly impair ureteral functionality. Function of the unobstructed contralateral ureter may be regulated by a systemic immune response as a result of the obstruction. PATIENT SUMMARY: Here, we studied in more detail the way the ureter responds to being blocked. We conclude that a strong immune response is activated by the blockage, leading to changes in the structure of the ureter possibly impacting function, which may not be reversible. This immune response also spreads to the opposite ureter, possibly allowing it to change its function to compensate for the reduced functionality of the blocked ureter.


Subject(s)
Hydronephrosis , Ureteral Obstruction , Urinary Tract Infections , Mice , Animals , Ureteral Obstruction/complications , Hydronephrosis/complications , Hydronephrosis/pathology , Fibrosis , Urinary Tract Infections/complications , Cytokines , Inflammation , Metalloproteases
SELECTION OF CITATIONS
SEARCH DETAIL
...