Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 17739, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34489541

ABSTRACT

The photocatalytic characteristics of two-dimensional (2D) GeC-based van der Waals heterobilayers (vdW-HBL) are systematically investigated to determine the amount of hydrogen (H2) fuel generated by water splitting. We propose several vdW-HBL structures consisting of 2D-GeC and 2D-SiC with exceptional and tunable optoelectronic properties. The structures exhibit a negative interlayer binding energy and non-negative phonon frequencies, showing that the structures are dynamically stable. The electronic properties of the HBLs depend on the stacking configuration, where the HBLs exhibit direct bandgap values of 1.978 eV, 2.278 eV, and 2.686 eV. The measured absorption coefficients for the HBLs are over ~ 105 cm-1, surpassing the prevalent conversion efficiency of optoelectronic materials. In the absence of external strain, the absorption coefficient for the HBLs reaches around 1 × 106 cm-1. With applied strain, absorption peaks are increased to ~ 3.5 times greater in value than the unstrained HBLs. Furthermore, the HBLs exhibit dynamically controllable bandgaps via the application of biaxial strain. A decrease in the bandgap occurs for both the HBLs when applied biaxial strain changes from the compressive to tensile strain. For + 4% tensile strain, the structure I become unsuitable for photocatalytic water splitting. However, in the biaxial strain range of - 6% to + 6%, both structure II and structure III have a sufficiently higher kinetic potential for demonstrating photocatalytic water-splitting activity in the region of UV to the visible in the light spectrum. These promising properties obtained for the GeC/SiC vdW heterobilayers suggest an application of the structures could boost H2 fuel production via water splitting.

2.
Sci Rep ; 11(1): 18669, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34548564

ABSTRACT

The high electronegativity between the atoms of two-dimensional (2D) group-III nitrides makes them attractive to demonstrating a strong out-of-plane piezo-electricity effect. Energy harvesting devices can be predicted by cultivating such salient piezoelectric features. This work explores the tribo-piezoelectric properties of 2D-indium nitride (InN) as a promising candidate in nanogenerator applications by means of first-principles calculations. In-plane interlayer sliding between two InN monolayers leads to a noticeable rise of vertical piezoelectricity. The vertical resistance between the InN bilayer renders tribological energy by the sliding effect. During the vertical sliding, a shear strength of 6.6-9.7 GPa is observed between the monolayers. The structure can be used as a tribo-piezoelectric transducer to extract force and stress from the generated out-of-plane tribo-piezoelectric energy. The A-A stacking of the bilayer InN elucidates the highest out-of-plane piezoelectricity. Any decrease in the interlayer distance between the monolayers improves the out-of-plane polarization and thus, increases the inductive voltage generation. Vertical compression of bilayer InN produces an inductive voltage in the range of 0.146-0.196 V. Utilizing such a phenomenon, an InN-based bilayer compression-sliding nanogenerator is proposed, which can tune the generated tribo-piezoelectric energy by compressing the interlayer distance between the InN monolayers. The considered model can render a maximum output power density of ~ 73 mWcm-2 upon vertical sliding.

SELECTION OF CITATIONS
SEARCH DETAIL
...