Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Oncol ; 12: 903537, 2022.
Article in English | MEDLINE | ID: mdl-36158693

ABSTRACT

Out-of-field patient doses in proton therapy are dominated by neutrons. Currently, they are not taken into account by treatment planning systems. There is an increasing need to include out-of-field doses in the dose calculation, especially when treating children, pregnant patients, and patients with implants. In response to this demand, this work presents the first steps towards a tool for the prediction of out-of-field neutron doses in pencil beam scanning proton therapy facilities. As a first step, a general Monte Carlo radiation transport model for simulation of out-of-field neutron doses was set up and successfully verified by comparison of simulated and measured ambient neutron dose equivalent and neutron fluence energy spectra around a solid water phantom irradiated with a variation of different treatment plan parameters. Simulations with the verified model enabled a detailed study of the variation of the neutron ambient dose equivalent with field size, range, modulation width, use of a range shifter, and position inside the treatment room. For future work, it is planned to use this verified model to simulate out-of-field neutron doses inside the phantom and to verify the simulation results by comparison with previous in-phantom measurement campaigns. Eventually, these verified simulations will be used to build a library and a corresponding tool to allow assessment of out-of-field neutron doses at pencil beam scanning proton therapy facilities.

2.
Front Oncol ; 12: 903706, 2022.
Article in English | MEDLINE | ID: mdl-35912238

ABSTRACT

Purpose: This study aims to characterize the neutron radiation field inside a scanning proton therapy treatment room including the impact of different pediatric patient sizes. Materials and Methods: Working Group 9 of the European Radiation Dosimetry Group (EURADOS) has performed a comprehensive measurement campaign to measure neutron ambient dose equivalent, H*(10), at eight different positions around 1-, 5-, and 10-year-old pediatric anthropomorphic phantoms irradiated with a simulated brain tumor treatment. Several active detector systems were used. Results: The neutron dose mapping within the gantry room showed that H*(10) values significantly decreased with distance and angular deviation with respect to the beam axis. A maximum value of about 19.5 µSv/Gy was measured along the beam axis at 1 m from the isocenter for a 10-year-old pediatric phantom at 270° gantry angle. A minimum value of 0.1 µSv/Gy was measured at a distance of 2.25 m perpendicular to the beam axis for a 1-year-old pediatric phantom at 140° gantry angle.The H*(10) dependence on the size of the pediatric patient was observed. At 270° gantry position, the measured neutron H*(10) values for the 10-year-old pediatric phantom were up to 20% higher than those measured for the 5-year-old and up to 410% higher than for the 1-year-old phantom, respectively. Conclusions: Using active neutron detectors, secondary neutron mapping was performed to characterize the neutron field generated during proton therapy of pediatric patients. It is shown that the neutron ambient dose equivalent H*(10) significantly decreases with distance and angle with respect to the beam axis. It is reported that the total neutron exposure of a person staying at a position perpendicular to the beam axis at a distance greater than 2 m from the isocenter remains well below the dose limit of 1 mSv per year for the general public (recommended by the International Commission on Radiological Protection) during the entire treatment course with a target dose of up to 60 Gy. This comprehensive analysis is key for general neutron shielding issues, for example, the safe operation of anesthetic equipment. However, it also enables the evaluation of whether it is safe for parents to remain near their children during treatment to bring them comfort. Currently, radiation protection protocols prohibit the occupancy of the treatment room during beam delivery.

3.
Front Oncol ; 12: 904563, 2022.
Article in English | MEDLINE | ID: mdl-35957900

ABSTRACT

Since 2010, EURADOS Working Group 9 (Radiation Dosimetry in Radiotherapy) has been involved in the investigation of secondary and scattered radiation doses in X-ray and proton therapy, especially in the case of pediatric patients. The main goal of this paper is to analyze and compare out-of-field neutron and non-neutron organ doses inside 5- and 10-year-old pediatric anthropomorphic phantoms for the treatment of a 5-cm-diameter brain tumor. Proton irradiations were carried out at the Cyclotron Centre Bronowice in IFJ PAN Krakow Poland using a pencil beam scanning technique (PBS) at a gantry with a dedicated scanning nozzle (IBA Proton Therapy System, Proteus 235). Thermoluminescent and radiophotoluminescent dosimeters were used for non-neutron dose measurements while secondary neutrons were measured with track-etched detectors. Out-of-field doses measured using intensity-modulated proton therapy (IMPT) were compared with previous measurements performed within a WG9 for three different photon radiotherapy techniques: 1) intensity-modulated radiation therapy (IMRT), 2) three-dimensional conformal radiation therapy (3D CDRT) performed on a Varian Clinac 2300 linear accelerator (LINAC) in the Centre of Oncology, Krakow, Poland, and 3) Gamma Knife surgery performed on the Leksell Gamma Knife (GK) at the University Hospital Centre Zagreb, Croatia. Phantoms and detectors used in experiments as well as the target location were the same for both photon and proton modalities. The total organ dose equivalent expressed as the sum of neutron and non-neutron components in IMPT was found to be significantly lower (two to three orders of magnitude) in comparison with the different photon radiotherapy techniques for the same delivered tumor dose. For IMPT, neutron doses are lower than non-neutron doses close to the target but become larger than non-neutron doses further away from the target. Results of WG9 studies have provided out-of-field dose levels required for an extensive set of radiotherapy techniques, including proton therapy, and involving a complete description of organ doses of pediatric patients. Such studies are needed for validating mathematical models and Monte Carlo simulation tools for out-of-field dosimetry which is essential for dedicated epidemiological studies which evaluate the risk of second cancers and other late effects for pediatric patients treated with radiotherapy.

4.
Med Phys ; 49(4): 2672-2683, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35090187

ABSTRACT

PURPOSE: Craniospinal irradiation (CSI) has greatly increased survival rates for patients with a diagnosis of medulloblastoma and other primitive neuroectodermal tumors. However, as it includes exposure of a large volume of healthy tissue to unwanted doses, there is a strong concern about the complications of the treatment, especially for the children. To estimate the risk of second cancers and other unwanted effects, out-of-field dose assessment is necessary. The purpose of this study is to evaluate and compare out-of-field doses in pediatric CSI treatment using conventional and advanced photon radiotherapy (RT) and advanced proton therapy. To our knowledge, it is the first such comparison based on in-phantom measurements. Additionally, for out-of-field doses during photon RT in this and other studies, comparisons were made using analytical modeling. METHODS: In order to describe the out-of-field doses absorbed in a pediatric patient during actual clinical treatment, an anthropomorphic phantom, which mimics the 10-year-old child, was used. Photon 3D-conformal RT (3D-CRT) and two advanced, highly conformal techniques: photon volumetric-modulated arc therapy (VMAT) and active pencil beam scanning (PBS) proton RT were used for CSI treatment. Radiophotoluminescent and poly-allyl-diglycol-carbonate nuclear track detectors were used for photon and neutron dosimetry in the phantom, respectively. Out-of-field doses from neutrons were expressed in terms of dose equivalent. A two-Gaussian model was implemented for out-of-field doses during photon RT. RESULTS: The mean VMAT photon doses per target dose to all organs in this study were under 50% of the target dose (i.e., <500 mGy/Gy), while the mean 3D-CRT photon dose to oesophagus, gall bladder, and thyroid, exceeded that value. However, for 3D-CRT, better sparing was achieved for eyes and lungs. The mean PBS photon doses for all organs were up to three orders of magnitude lower compared to VMAT and 3D-CRT and exceeded 10 mGy/Gy only for the oesophagus, intestine, and lungs. The mean neutron dose equivalent during PBS for eight organs of interest (thyroid, breasts, lungs, liver, stomach, gall bladder, bladder, prostate) ranged from 1.2 mSv/Gy for bladder to 23.1 mSv/Gy for breasts. Comparison of out-of-field doses in this and other phantom studies found in the literature showed that a simple and fast two-Gaussian model for out-of-field doses as a function of distance from the field edge can be applied in a CSI using photon RT techniques. CONCLUSIONS: PBS is the most promising technique for out-of-field dose reduction in comparison to photon techniques. Among photon techniques, VMAT is a preferred choice for most of out-of-field organs and especially for the thyroid, while doses for eyes, breasts, and lungs are lower for 3D-CRT. For organs outside the field edge, a simple analytical model can be helpful for clinicians involved in treatment planning using photon RT but also for retrospective data analysis for cancer risk estimates and epidemiology in general.


Subject(s)
Cerebellar Neoplasms , Craniospinal Irradiation , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Cerebellar Neoplasms/radiotherapy , Child , Craniospinal Irradiation/adverse effects , Craniospinal Irradiation/methods , Humans , Male , Organs at Risk/radiation effects , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
5.
Radiat Prot Dosimetry ; 180(1-4): 355-359, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29149320

ABSTRACT

We developed a radiation detector based on an organic scintillator for spectrometry and dosimetry of out-of-field secondary neutrons from clinical proton beams. The detector consists of an EJ-299-34 crystalline organic scintillator, coupled by fiber optic cable to a silicon photomultiplier (SiPM). Proof of concept measurements were taken with 137Cs and 252Cf, and corresponding simulations were performed in MCNPX-PoliMi. Despite its small size, the detector is able to discriminate between neutron and gamma-rays via pulse shape discrimination. We simulated the response function of the detector to monoenergetic neutrons in the 100 keV-0 MeV range using MCNPX-PoliMi. The measured unfolded 252Cf neutron spectrum is in good agreement with the theoretical Watt fission spectrum. We determined the ambient dose equivalent by folding the spectrum with the fluence-to-ambient dose conversion coefficient, with a 1.4% deviation from theory. Some preliminary proton beam experiments were preformed at the Bronowice Cyclotron Center patient treatment facility using a clinically relevant proton pencil beam for brain tumor and craino-spinal treatment directed at a child phantom.


Subject(s)
Brain Neoplasms/radiotherapy , Californium/analysis , Cesium Radioisotopes/analysis , Neutrons , Phantoms, Imaging , Scintillation Counting/instrumentation , Child , Child, Preschool , Computer Simulation , Humans , Radiotherapy Dosage
6.
Med Phys ; 45(1): 391-401, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29131351

ABSTRACT

PURPOSE: To evaluate the effect on charge collection in the ionization chamber (IC) in proton pencil beam scanning (PBS), where the local dose rate may exceed the dose rates encountered in conventional MV therapy by up to three orders of magnitude. METHODS: We measured values of the ion recombination (ks ) and polarity (kpol ) correction factors in water, for a plane-parallel Markus TM23343 IC, using the cyclotron-based Proteus-235 therapy system with an active proton PBS of energies 30-230 MeV. Values of ks were determined from extrapolation of the saturation curve and the Two-Voltage Method (TVM), for planar fields. We compared our experimental results with those obtained from theoretical calculations. The PBS dose rates were estimated by combining direct IC measurements with results of simulations performed using the FLUKA MC code. Values of ks were also determined by the TVM for uniformly irradiated volumes over different ranges and modulation depths of the proton PBS, with or without range shifter. RESULTS: By measuring charge collection efficiency versus applied IC voltage, we confirmed that, with respect to ion recombination, our proton PBS represents a continuous beam. For a given chamber parameter, e.g., nominal voltage, the value of ks depends on the energy and the dose rate of the proton PBS, reaching c. 0.5% for the TVM, at the dose rate of 13.4 Gy/s. For uniformly irradiated regular volumes, the ks value was significantly smaller, within 0.2% or 0.3% for irradiations with or without range shifter, respectively. Within measurement uncertainty, the average value of kpol , for the Markus TM23343 IC, was close to unity over the whole investigated range of clinical proton beam energies. CONCLUSION: While no polarity effect was observed for the Markus TM23343 IC in our pencil scanning proton beam system, the effect of volume recombination cannot be ignored.


Subject(s)
Proton Therapy , Radiometry/methods , Computer Simulation , Cyclotrons , Monte Carlo Method , Proton Therapy/methods , Water
7.
Radiat Prot Dosimetry ; 176(3): 331-340, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28338841

ABSTRACT

The purpose of this study was to measure out-of-field organ doses in clinical conditions in anthropomorphic paediatric phantoms which received a simulated treatment of a brain tumour with intensity modulated radiotherapy (IMRT) and 3D conformal radiotherapy (3D CRT). Organ doses measured with radiophotoluminescent and thermoluminescent dosemeters were on average 1.6 and 3.0 times higher for the 5 y-old than for the 10 y-old phantom for IMRT and 3D CRT, respectively. A larger 5-y to 10-y organ dose ratio for 3D CRT can be explained because the use of a mechanical wedge for the 5-y-old 3D CRT phantom treatment increased out-of-field doses. Due to different configurations of the radiation fields, for both phantoms, the IMRT technique resulted in a higher non-target brain dose and higher eye doses but lower thyroid doses compared to 3D CRT. For 3D CRT (which used a non-coplanar field configuration), eye doses were 3-6% and for IMRT (which used a coplanar field configuration) 27-30% of the treatment dose, respectively. For thyroid and more distant organs, doses were less than 1% of the treatment dose. Comparison of measured doses and doses calculated by the treatment planning system (TPS) showed that the TPS underestimated out-of-field doses both for IMRT and 3D CRT.


Subject(s)
Brain Neoplasms/radiotherapy , Craniospinal Irradiation/methods , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Child , Child, Preschool , Humans , Models, Anatomic , Organs at Risk/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...