Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Invertebr Pathol ; 205: 108128, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735430

ABSTRACT

The crayfish plague pathogen Aphanomyces astaci has been implicated in a number of mass mortalities and irreversible population declines of native crayfish across Europe. At present, the reservoirs of the pathogen in Europe are mainly populations of invasive North American crayfish species. In southwestern Europe, including France, a particularly widespread invader is the red swamp crayfish Procambarus clarkii. Recent distribution data confirm that P. clarkii is present in at least 75 French departments, i.e. more than 78% of those in metropolitan France. We analysed the prevalence and pathogen load of A. astaci in 42 populations of this species in western France (Nouvelle Aquitaine region), where the species is most densely distributed, particularly in a wide range of environments around the Gironde estuary. The pathogen was detected by two different quantitative PCR assays in more than three quarters of the populations studied (34 out of 42); 163 out of 480 analysed crayfish individuals tested positive for the presence of A. astaci. In most cases, individual infection levels were very low, detectable with quantitative PCR but not sufficient for pathogen genotyping. In seven P. clarkii individuals from four populations, however, we were able to assess A. astaci variation by microsatellite markers and sequencing of mitochondrial markers. All these host specimens carried A. astaci genotype group D, haplotype d1, which has caused the majority of crayfish plague outbreaks in neighbouring Spain. In contrast, the French outbreaks genotyped to date (including eight newly analysed in this study) were mostly caused by strains of genotype group B, specific to the signal crayfish Pacifastacus leniusculus. Haplotype d1 found in P. clarkii was involved in one of the newly characterised outbreaks. Our study confirms that P. clarkii is a potentially important reservoir of the crayfish plague pathogen in France, but not the main source of the pathogen in mass mortalities of A. pallipes, probably due to different ecological requirements of the different invasive host crayfish. However, as P. clarkii continues to spread, the threat posed by this species to native crayfish is likely to increase.


Subject(s)
Aphanomyces , Astacoidea , Animals , Astacoidea/microbiology , Aphanomyces/genetics , Aphanomyces/physiology , France/epidemiology , Prevalence , Introduced Species , White
2.
J Invertebr Pathol ; 202: 108040, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081448

ABSTRACT

Ornamental trade has become an important introduction pathway of non-native aquatic species worldwide. Correspondingly, there has been an alarming increase in the number of established crayfish of aquarium origin in Europe over the previous decade. The oomycete Aphanomyces astaci, the pathogen causing crayfish plague responsible for serious declines of European crayfish populations, is dispersed with introduced North American crayfish. The role of ornamental taxa in introducing and spreading different genotypes of this pathogen in open waters remains unclear. We investigated the distribution, prevalence, and diversity of A. astaci in Budapest, Hungary, which became a hotspot of aquarium crayfish introductions. Their establishment in this area was facilitated by locally abundant thermal waters. We screened for A. astaci in six host taxa from 18 sites sampled between 2018 and 2021: five cambarids (Cambarellus patzcuarensis, Faxonius limosus, Procambarus alleni, P. clarkii, P. virginalis) and one native astacid (Pontastacus leptodactylus). The pathogen was confirmed at five sampled sites in four host taxa: P. virginalis, P. clarkii, F. limosus, and for the first time in European open waters also in P. alleni. Genotyping was successful only in individuals from two different brooks where multiple host species coexisted but revealed unexpected patterns. Mitochondrial B-haplogroup of A. astaci, previously usually reported from Pacifastacus leniusculus or infected European species, was detected in P. virginalis at both sites, and in both F. limosus and P. virginalis sampled from a thermally stable tributary of Barát brook in 2018. In contrast, A-haplogroup of A. astaci was detected in coexisting F. limosus, P. virginalis and P. clarkii sampled in the same watercourse just a few hundred meters downstream in 2020. Additional genotyping methods indicated that a previously unknown A. astaci strain was associated with the latter haplogroup. One P. virginalis individual from 2020 was apparently co-infected by strains representing both mitochondrial haplogroups. The results indicated multiple sources of A. astaci in Budapest, likely directly associated with the introduction of ornamental species, interspecific transmission of this pathogen among ornamental hosts, and potential for a quick spatial or temporal turnover of dominant A. astaci strains at a certain locality. This highlights that in regions with high richness of potential A. astaci hosts, host taxon/pathogen genotype combinations become unpredictable, which might prevent reliable genotyping of pathogen sources in local crayfish mass mortalities.


Subject(s)
Aphanomyces , Astacoidea , Humans , Animals , Aphanomyces/genetics , Europe , Genotype , Genotyping Techniques
3.
J Invertebr Pathol ; 173: 107390, 2020 06.
Article in English | MEDLINE | ID: mdl-32353366

ABSTRACT

The crayfish plague pathogen Aphanomyces astaci, which is among the most studied pathogens of aquatic invertebrates, co-evolved with North American crayfish species but threatens crayfish on other continents. The pathogen causes mass mortalities, particularly in Europe. In this study we document 12 crayfish plague outbreaks that occurred from 2014 to 2019 in Czechia and, by using available molecular techniques (microsatellite and mtDNA markers), we reveal the A. astaci genotypes involved. Our results provide the first evidence of strains from genotype group D, originally associated with the host Procambarus clarkii, causing Astacus astacus and Austropotamobius torrentium mass mortalities in Czechia. Moreover, mtDNA sequencing confirmed two distinct haplotypes of the D haplogroup, indicating two independent sources of infection, presumably originating from ornamental crayfish in the pet trade or spreading from crayfish established in neighbouring countries. Genotype group A was recorded in two As. astacus mortalities, and genotype group E, associated with Faxonius limosus, in two Au. torrentium and three As. astacus mortalities. Microsatellite genotyping also reidentified the unusual genotype SSR-Up in two As. astacus outbreaks, ten years after its first documented occurrence. In addition, we tested healthy-appearing indigenous crayfish from 25 localities for potential chronic infections. No traces of A. astaci DNA were detected; chronic infections in European crayfish species thus do not seem a pervasive phenomenon in Czechia. However, their role as A. astaci latent reservoirs, especially in Pontastacus leptodactylus populations introduced to the country since the late 19th century, cannot be excluded.


Subject(s)
Aphanomyces/physiology , Astacoidea/parasitology , Animals , Aphanomyces/genetics , Czech Republic , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...