Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 334: 118570, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002824

ABSTRACT

BACKGROUND: The invasion of luminal antigens and an aberrant immune response resulting from a disrupted physical epithelial barrier are the key characteristics of ulcerative colitis (UC). The restoration of damaged epithelial function is crucial for maintaining mucosal homeostasis and disease quiescence. Current therapies for UC primarily focus on suppressing inflammation. However, most patients fail to respond to therapy or develop secondary resistance over time, emphasizing the need to develop novel therapeutic targets for UC. Our study aimed to identify the potential targets of a novel modified herbal formula from the Zhen Wu Decoction, namely CDD-2103, which has demonstrated promising efficacy in treating chronic colitis. METHODS: The effect of CDD-2103 on epithelial barrier function was examined using in vitro and ex vivo models of tissue injury, as well as a chronic colitis C57BL/6 mouse model. Transcriptomic analysis was employed to profile gene expression changes in colonic tissues following treatment with CDD-2103. RESULTS: Our in vivo experiments demonstrated that CDD-2103 dose-dependently reduced disease severity in mice with chronic colitis. The efficacy of CDD-2103 was mediated by a reduction in goblet cell loss and the enhancement of tight junction protein integrity. Mechanistically, CDD-2103 suppressed epithelial cell apoptosis and tight junction protein breakdown by activating the soluble guanynyl cyclase (sGC)-mediated cyclic guanosine monophosphate (cGMP)/PKG signaling cascade. Molecular docking analysis revealed strong sGC ligand recognition by the CDD-2103-derived molecules, warranting further investigation. CONCLUSION: Our study revealed a novel formulation CDD-2103 that restores intestinal barrier function through the activation of sGC-regulated cGMP/PKG signaling. Furthermore, our findings suggest that targeting sGC can be an effective approach for promoting mucosal healing in the management of UC.

2.
Comput Biol Med ; 178: 108775, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941901

ABSTRACT

BACKGROUND: CDD-2103 is an herbal prescription used to treat ulcerative colitis (UC). This study aimed to uncover its mechanism by integrating metabolomics and serum-feces pharmacochemistry-based network pharmacology. METHODS: A DSS-induced chronic colitis mice model was used to evaluate the anti-colitis effect of CDD-2103. Serum and feces metabolomics were conducted to identify differential metabolites and pathways. In the serum-feces pharmacochemistry study, biological samples were collected from rats treated with CDD-2103. Then, network pharmacology was utilized to predict the targets of the identified compounds. Critical genes were extracted through the above-integrated analysis. The interactions between targets, CDD-2103, and its compounds were validated through molecular docking, immunoblotting, and enzyme activity assays. RESULTS: CDD-2103 alleviated ulcerous symptoms and colonic injuries in colitis mice. Metabolomics study identified differential metabolites associated with tryptophan, glycerophospholipid, and linoleic acid metabolisms. The serum-feces pharmacochemistry study revealed twenty-three compounds, which were subjected to network pharmacology analysis. Integration of these results identified three key targets (AHR, PLA2, and PTGS2). Molecular docking showed strong affinities between the compounds and targets. PTGS2 was identified as a hub gene targeted by most CDD-2103 compounds. Immunoblotting and enzyme activity assays provided further evidence that CDD-2103 alleviates UC, potentially through its inhibitory effect on cyclooxygenase-2 (COX-2, encoded by PTGS2), with alkaloids and curcuminoids speculated as crucial anti-inflammatory compounds. CONCLUSION: This integrated strategy reveals the mechanism of CDD-2103 and provides insights for developing herbal medicine-based therapies for UC.

3.
Phytomedicine ; 129: 155694, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733904

ABSTRACT

BACKGROUND: Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE: The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS: CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS: Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS: Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.


Subject(s)
Dextran Sulfate , Disease Models, Animal , Drugs, Chinese Herbal , Macrophages , Mice, Inbred C57BL , Receptors, CCR2 , p38 Mitogen-Activated Protein Kinases , Animals , Male , Mice , Chronic Disease , Colitis/drug therapy , Colitis/chemically induced , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Macrophages/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Receptors, CCR2/metabolism , Signal Transduction/drug effects
4.
J Adv Res ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38677546

ABSTRACT

INTRODUCTION: Ulcerative colitis (UC) is a chronic inflammatory disease characterized by loss of immune tolerance to luminal antigens and progressive intestinal tissue injury. Thus, the re-establishment of immune tolerance is crucial for suppressing aberrant immune responses and UC progression. OBJECTIVES: This study aimed to investigate the mechanisms underlying the action of CDD-2103 and its bioactive compounds in mediating immune regulation in mouse models of colitis. METHODS: Two experimental colitis models, chronic 2,4,6-trinitrobenzene sulfonic acid (TNBS)- and T-cell transfer-induced Rag1-/- mice, were used to determine the effects of CDD-2103 on colitis progression. Single-cell transcriptome analysis was used to profile the immune landscape and its interactions after CDD-2103 treatment. Liquid chromatography-mass spectrometry (LC-MS) was used to analyze the major components interacting with lymphoid cells. A primary cell co-culture system was used to confirm the effects of bioactive component. RESULTS: CDD-2103 dose-dependently suppresses the progression of colitis induced by chemicals or T cell transplantation in Rag1-/- mice. The effect of CDD-2103 is primarily attributable to an increase in the de novo generation of regulatory T cells (Tregs) in the lamina propria (LP). Single-cell transcriptomic analysis revealed that CDD-2103 treatment increased the number of tolerogenic dendritic cells (DCs). Mechanistically, CDD-2103 promoted tolerogenic DCs accumulation and function by upregulating several genes in the electron transport chain related to oxidative phosphorylation, leading to increased differentiation of Tregs. Further LC-MS analysis identified several compounds in CDD-2103, particularly those distributed within the mesenteric lymph nodes of mice. Subsequent studies revealed that palmatine and berberine promoted tolerogenic bone marrow-derived dendritic cells (BMDC)-mediated Treg differentiation. CONCLUSION: Overall, our study demonstrated that the clinically beneficial effect of CDD-2103 in the treatment of UC is based on the induction of immune tolerance. In addition, this study supports berberine and palmatine as potential chemical entities in CDD-2103 that modulate immune tolerance.

SELECTION OF CITATIONS
SEARCH DETAIL
...