Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biofactors ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818964

ABSTRACT

Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.

2.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337695

ABSTRACT

In this study, Liquid Chromatography-Mass Spectrometry (LC-MS)-based metabolomics profiling was conducted to elucidate the urinary profiles of premature infants during early and late postnatal stages. As a result, we discovered significant excretion of maternal drugs in early-stage infants and identified crucial metabolites like hormones and amino acids. These findings shed light on the maternal impact on neonatal metabolism and underscore the beneficial effects of breastfeeding on the metabolism of essential amino acids in infants. This research not only enhances our understanding of maternal-infant nutritional interactions and their long-term implications for preterm infants but also offers critical insights into the biochemical characteristics and physiological mechanisms of preterm infants, laying a groundwork for future clinical studies focused on neonatal development and health.


Subject(s)
Infant, Premature , Liquid Chromatography-Mass Spectrometry , Infant , Female , Humans , Infant, Newborn , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolome , Metabolomics/methods
3.
Metabolites ; 14(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38248837

ABSTRACT

Multi-omics integrates diverse types of biological information from genomic, proteomic, and metabolomics experiments to achieve a comprehensive understanding of complex cellular mechanisms. However, this approach is also challenging due to technical issues such as limited sample quantities, the complexity of data pre-processing, and reproducibility concerns. Furthermore, existing studies have primarily focused on technical performance assessment and the presentation of modified protocols through quantitative comparisons of the identified protein counts. Nevertheless, the specific differences in these comparisons have been minimally investigated. Here, findings obtained from various omics approaches were profiled using various extraction methods (methanol extraction, the Folch method, and Matyash methods for metabolites and lipids) and two digestion methods (filter-aided sample preparation (FASP) and suspension traps (S-Trap)) for resuspended proteins. FASP was found to be more effective for the identification of membrane-related proteins, whereas S-Trap excelled in isolating nuclear-related and RNA-processing proteins. Thus, FASP may be suitable for investigating the immune response and bacterial infection pathways, whereas S-Trap may be more effective for studies focused on the mechanisms of neurodegenerative diseases. Moreover, regarding the choice of extraction method, the single-phase method identified organic compounds and compounds related to fatty acids, whereas the two-phase extraction method identified more hydrophilic compounds such as nucleotides. Lipids with strong hydrophobicity, such as ChE and TG, were identified in the two-phase extraction results. These findings highlight that significant differences among small molecules are primarily identified due to the varying polarities of extraction solvents. These results, obtained by considering variables such as human error and batch effects in the sample preparation step, offer comprehensive and detailed results not previously provided by existing studies, thereby aiding in the selection of the most suitable pre-processing approach.

4.
Molecules ; 25(13)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630776

ABSTRACT

Emiliania huxleyi is one of the most abundant marine planktons, and it has a crucial feature in the carbon cycle. However, proteomic analyses of Emiliania huxleyi have not been done extensively. In this study, a three-dimensional liquid chromatography (3D-LC) system consisting of strong cation exchange, high- and low-pH reversed-phase liquid chromatography was established for in-depth proteomic profiling of Emiliania huxleyi. From tryptic proteome digest, 70 fractions were generated and analyzed using liquid chromatography-tandem mass spectrometry. In total, more than 84,000 unique peptides and 10,000 proteins groups were identified with a false discovery rate of ≤0.01. The physicochemical properties of the identified peptides were evaluated. Using ClueGO, approximately 700 gene ontology terms and 15 pathways were defined from the identified protein groups with p-value ≤0.05, covering a wide range of biological processes, cellular components, and molecular functions. Many biological processes associated with CO2 fixation, photosynthesis, biosynthesis, and metabolic process were identified. Various molecular functions relating to protein binding and enzyme activities were also found. The 3D-LC strategy is a powerful approach for comparative proteomic studies on Emiliania huxleyi to reveal changes in its protein level and related mechanism.


Subject(s)
Haptophyta/chemistry , Proteins/analysis , Proteomics/methods , Tandem Mass Spectrometry/methods , Chromatography, Reverse-Phase/methods , Gene Ontology , Peptides/analysis , Peptides/isolation & purification , Proteins/chemistry , Proteins/isolation & purification , Proteome/analysis , Proteome/genetics , Proteome/isolation & purification , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...