Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 42(25): 8481-8, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14658903

ABSTRACT

A series of heterometallic Pt-M (M=Zn and Cd) sulfide aggregates with growing nuclearities (Pt2M), (Pt4M), and (Pt4M2), viz., [ZnPt2Cl2(PPh3)4(mu3-S)2] (2), [CdPt2Cl2(PPh3)4(mu3-S)2] (3), [Pt2(PPh3)4(mu3-S)2]2[ZnSO4]2 (4), [Pt2(PPh3)4(mu3-S)2]2[CdSO4]2.H2O (5), [CdPt4(PPh3)8(mu3-S)4][ClO4]2 (7), and [ZnPt4(PPh3)8(mu3-S)4][ClO4]2 (8), have been prepared from Pt2(PPh3)4(mu-S)2 (1) with appropriate zinc and cadmium substrates. The structures have been determined by single-crystal X-ray diffraction. The supporting anions play an active role in the structural assembly process. An unexpected disintegration complex [Pt2(S2CH2)Cl(PPh3)4][PF6] (6) has also been isolated and characterized by single-crystal X-ray diffraction. The mechanism of the formation of 6 is proposed.

2.
Inorg Chem ; 39(23): 5299-305, 2000 Nov 13.
Article in English | MEDLINE | ID: mdl-11187470

ABSTRACT

Three heterometallic Au-Pt complexes [Pt2(PPh3)4(mu-S)(mu 3-S)Au(PPh3)][PF6] (2), [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppm)]-[PF6]2 (3), and [Pt2(PPh3)4(mu 3-S)2Au2(mu-dppf)][PF6]2 (4) have been synthesized from Pt2(PPh3)4(mu-S)2 (1) [dppm = Ph2PCH2PPh2; dppf = (C5H4PPh2)2Fe] and characterized by single-crystal X-ray crystallography. In 2, the Au(I) atom is anchored on only one of the sulfur centers. In 3 and 4, both sulfur atoms are aurated, showing the ability of 1 to support an overhead bridge structure, viz. [Au2(P-P)], with or without the presence of Au-Au bond. The change of dppf to dppm facilitates such active interactions. Two stereoisomers of complex 3 (3a,b) have been obtained and characterized by single-crystal X-ray crystallography. NLDFT calculations on 2 show that the linear coordination mode is stabilized with respect to the trigonal planar mode by 14.0 kJ/mol. All complexes (2-4) are fluxional in solution with different mechanisms. In 2, the [Au(PPh3)] fragment switches rapidly between the two sulfur sites. Our hybrid MM-NLDFT calculations found a transition state in which the Au(I) bears an irregular trigonal planar geometry (delta G++ = 19.9 kJ/mol), as well as an intermediate in which Au(I) adopts a regular trigonal planar geometry. Complexes 3a,b are roughly diastereoisomeric and related by sigma (mirror plane) conversion. This symmetry operation can be broken down to two mutually dependent fluxional processes: (i) rapid flipping of the dppm methylene group across the molecular plane defined by the overhead bridge; (ii) rocking motion of the two Au atoms across the S...S axis of the (Pt2S2) core. Modeling of the former by molecular mechanics yields a steric barrier of 29.0 kJ/mol, close to that obtained from variable-temperature 31P(1Hz) NMR study (33.7 kJ/mol). In 4, the twisting of the ferrocenyl moiety across the S...S axis is in concert with a rocking motion of the two gold atoms. The movement of dppf is sterically most demanding, and hence, 4 is the only complex that shows a static structure at lower temperatures. Pertinent crystallographic data: (2) space group P1, a = 15.0340(5) A, b = 15.5009(5) A, c = 21.9604(7) A, alpha = 74.805(1) degrees, beta = 85.733(1) degrees, gamma = 78.553(1) degrees, R = 0.0500; (3a) space group Pna2(1), a = 32.0538(4) A, b = 16.0822(3) A, c = 18.9388(3) A, R = 0.0347; (3b) space group Pna2(1), a = 31.950(2) A, b = 16.0157(8) A, c = 18.8460(9) A, R = 0.0478; (4) space group P2(1)/c, a = 13.8668(2) A, b = 51.7754(4) A, c = 15.9660(2) A, beta = 113.786(1) degrees, R = 0.0649.

4.
Inorg Chem ; 36(10): 2138-2146, 1997 May 07.
Article in English | MEDLINE | ID: mdl-11669835

ABSTRACT

The organopalladium complex containing ortho-metalated (S)-(1-(dimethylamino)ethyl)naphthalene as the chiral auxiliary has been used successfully to promote the asymmetric [4+2] Diels-Alder reactions between 1-phenyl-3,4-dimethylphosphole and the following coordinated dienophiles: (a) diphenylvinylphosphine; (b) (E)-diphenyl-1-propenylphosphine; (c) (Z)-diphenyl-1-propenylphosphine. Reaction a generates three carbon and one phosphorus stereogenic centers while reactions b and c each produce four carbon and one phosphorus chiral centers. In dichloromethane, all three reactions proceeded smoothly at room temperature giving the corresponding rigid diphosphines in high yields. Under similar reaction conditions, the reaction times observed for reactions a-c are 2, 3, and 50 h, respectively. Two-dimensional ROESY NMR studies confirmed that the prolonged reaction time required for reaction c is due to several major repulsive interactions between the chiral naphthylamine auxiliary and the (Z)-methyl-substituted vinylphosphine in the transition state. Nevertheless, all three reactions gave the corresponding rigid diphosphine in high yields. The absolute stereochemistries of the three bidentate phosphine ligands that were produced from the cycloaddition reactions have been assigned by 2D ROESY NMR spectroscopy. These diphosphines are powerful sequesterers of group 8 metals although they are highly air-sensitive in the free ligand form. The coordination chemistry and the absolute stereochemistry of the optically active complex [1alpha,4alpha,5alpha(S),6alpha(S),7R]-dichloro[5-(diphenylphosphino)-2,3,6-trimethy-7-phenyl-7-phosphabicyclo[2.2.1]-hept-2-ene-P(5)(),P(7)()]palladium(II) has been studied by single-crystal X-ray analysis. Crystal structure data: C(27)H(28)Cl(2)P(2)Pd, M(r) = 591.7; triclinic; space group P1; a = 8.643(3), b = 9.044(6), c = 9.058(4) Å; alpha = 102.75(4) degrees, beta = 108.59(2) degrees, gamma = 97.82(3) degrees; V = 638.0(5) Å(3); Z = 1; R(1) = 0.036.

5.
Environ Monit Assess ; 5(3): 325-32, 1985 Sep.
Article in English | MEDLINE | ID: mdl-24258037

ABSTRACT

The Sr/Ca ratios in molluscan shells in Singapore waters were measured using the X-ray fluorescence (XRF) technique. Our results show that the Sr/Ca ratio varies greatly among different species. However, within the same species, this ratio is practically the same for samples collected from sites close together but varies significantly for samples from sites far apart. Furthermore, this study shows that whole shell analysis using the XRF technique is simple and quick and that its application to environmental monitoring seems feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...