Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
JAMA Oncol ; 3(11): 1538-1545, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28715540

ABSTRACT

IMPORTANCE: Hand-foot syndrome (HFS) is a common adverse effect of capecitabine treatment. OBJECTIVE: To compare the incidence and time to onset of grade 2 or greater HFS in patients receiving pyridoxine vs placebo and to identify biomarkers predictive of HFS. DESIGN, SETTING, AND PARTICIPANTS: This single-center, randomized double-blind, placebo-controlled phase 3 trial conducted at National Cancer Centre Singapore assessed whether oral pyridoxine could prevent the onset of grade 2 or higher HFS in 210 patients scheduled to receive single-agent capecitabine chemotherapy for breast, colorectal, and other cancers. INTERVENTIONS: Patients were randomized to receive concurrent pyridoxine (200 mg) or placebo daily for a maximum of 8 cycles of capecitabine, with stratification by sex and use in adjuvant or neoadjuvant vs palliative setting. Patients were withdrawn from the study on development of grade 2 or higher HFS or cessation of capecitabine. MAIN OUTCOMES AND MEASURES: Primary end point was the incidence of grade 2 or higher HFS in patients receiving pyridoxine. Secondary end points included the time to onset (days) of grade 2 or higher HFS and identification of biomarkers predictive of HFS, including baseline folate and vitamin B12 levels, as well as genetic polymorphisms with genome-wide arrays. RESULTS: In this cohort of 210 patients (median [range] age, 58 [26-82] years; 162 women) grade 2 or higher HFS occurred in 33 patients (31.4%) in the pyridoxine arm vs 39 patients (37.1%) in the placebo arm (P = .38). The median time to onset of grade 2 or higher HFS was not reached in both arms. In univariate analysis, the starting dose of capecitabine (odds ratio [OR], 1.99; 95% CI, 1.32-3.00; P = .001), serum folate levels (OR, 1.27; 95% CI, 1.10-1.47; P = .001), and red blood cell folate levels (OR, 1.25; 95% CI, 1.08-1.44; P = .003) were associated with increased risk of grade 2 or higher HFS. In multivariate analyses, serum folate (OR, 1.30; 95% CI, 1.12-1.52; P < .001) and red blood cell folate (OR, 1.28; 95% CI, 1.10-1.49; P = .001) were the only significant predictors of grade 2 or higher HFS. Grade 2 or higher HFS was associated with 300 DNA variants at genome-wide significance (P < 5 × 10-8), including a novel DPYD variant (rs75267292; P = 1.57 × 10-10), and variants in the MACF1 (rs183324967, P = 4.80 × 10-11; rs148221738, P = 5.73 × 10-10) and SPRY2 (rs117876855, P < 1.01 × 10-8; rs139544515, P = 1.30 × 10-8) genes involved in wound healing. CONCLUSIONS AND RELEVANCE: Pyridoxine did not significantly prevent or delay the onset of grade 2 or higher HFS. Serum and red blood cell folate levels are independent predictors of HFS. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00486213.


Subject(s)
Antimetabolites, Antineoplastic/adverse effects , Capecitabine/adverse effects , Hand-Foot Syndrome/prevention & control , Neoplasms/drug therapy , Pyridoxine/administration & dosage , Adult , Aged , Aged, 80 and over , Asian People/genetics , Chi-Square Distribution , Dihydrouracil Dehydrogenase (NADP)/genetics , Double-Blind Method , Drug Administration Schedule , Female , Folic Acid/blood , Genetic Predisposition to Disease , Genome-Wide Association Study , Hand-Foot Syndrome/blood , Hand-Foot Syndrome/ethnology , Hand-Foot Syndrome/genetics , Humans , Incidence , Intracellular Signaling Peptides and Proteins/genetics , Kaplan-Meier Estimate , Logistic Models , Male , Membrane Proteins/genetics , Microfilament Proteins/genetics , Middle Aged , Multivariate Analysis , Neoplasms/blood , Neoplasms/ethnology , Odds Ratio , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Predictive Value of Tests , Risk Assessment , Risk Factors , Severity of Illness Index , Singapore/epidemiology , Time Factors , Treatment Outcome
2.
Nature ; 541(7635): 81-86, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28002404

ABSTRACT

Approximately 1.5 billion people worldwide are overweight or affected by obesity, and are at risk of developing type 2 diabetes, cardiovascular disease and related metabolic and inflammatory disturbances. Although the mechanisms linking adiposity to associated clinical conditions are poorly understood, recent studies suggest that adiposity may influence DNA methylation, a key regulator of gene expression and molecular phenotype. Here we use epigenome-wide association to show that body mass index (BMI; a key measure of adiposity) is associated with widespread changes in DNA methylation (187 genetic loci with P < 1 × 10-7, range P = 9.2 × 10-8 to 6.0 × 10-46; n = 10,261 samples). Genetic association analyses demonstrate that the alterations in DNA methylation are predominantly the consequence of adiposity, rather than the cause. We find that methylation loci are enriched for functional genomic features in multiple tissues (P < 0.05), and show that sentinel methylation markers identify gene expression signatures at 38 loci (P < 9.0 × 10-6, range P = 5.5 × 10-6 to 6.1 × 10-35, n = 1,785 samples). The methylation loci identify genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. Finally, we show that the disturbances in DNA methylation predict future development of type 2 diabetes (relative risk per 1 standard deviation increase in methylation risk score: 2.3 (2.07-2.56); P = 1.1 × 10-54). Our results provide new insights into the biologic pathways influenced by adiposity, and may enable development of new strategies for prediction and prevention of type 2 diabetes and other adverse clinical consequences of obesity.


Subject(s)
Adiposity/genetics , Body Mass Index , DNA Methylation/genetics , Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic , Epigenomics , Genome-Wide Association Study , Obesity/genetics , Adipose Tissue/metabolism , Asian People/genetics , Blood/metabolism , Cohort Studies , Diabetes Mellitus, Type 2/complications , Europe/ethnology , Female , Genetic Markers , Genetic Predisposition to Disease , Humans , India/ethnology , Male , Obesity/blood , Obesity/complications , Overweight/blood , Overweight/complications , Overweight/genetics , White People/genetics
3.
Lancet Diabetes Endocrinol ; 3(7): 526-534, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26095709

ABSTRACT

BACKGROUND: Indian Asians, who make up a quarter of the world's population, are at high risk of developing type 2 diabetes. We investigated whether DNA methylation is associated with future type 2 diabetes incidence in Indian Asians and whether differences in methylation patterns between Indian Asians and Europeans are associated with, and could be used to predict, differences in the magnitude of risk of developing type 2 diabetes. METHODS: We did a nested case-control study of DNA methylation in Indian Asians and Europeans with incident type 2 diabetes who were identified from the 8-year follow-up of 25 372 participants in the London Life Sciences Prospective Population (LOLIPOP) study. Patients were recruited between May 1, 2002, and Sept 12, 2008. We did epigenome-wide association analysis using samples from Indian Asians with incident type 2 diabetes and age-matched and sex-matched Indian Asian controls, followed by replication testing of top-ranking signals in Europeans. For both discovery and replication, DNA methylation was measured in the baseline blood sample, which was collected before the onset of type 2 diabetes. Epigenome-wide significance was set at p<1 × 10(-7). We compared methylation levels between Indian Asian and European controls without type 2 diabetes at baseline to estimate the potential contribution of DNA methylation to increased risk of future type 2 diabetes incidence among Indian Asians. FINDINGS: 1608 (11·9%) of 13 535 Indian Asians and 306 (4·3%) of 7066 Europeans developed type 2 diabetes over a mean of 8·5 years (SD 1·8) of follow-up. The age-adjusted and sex-adjusted incidence of type 2 diabetes was 3·1 times (95% CI 2·8-3·6; p<0·0001) higher among Indian Asians than among Europeans, and remained 2·5 times (2·1-2·9; p<0·0001) higher after adjustment for adiposity, physical activity, family history of type 2 diabetes, and baseline glycaemic measures. The mean absolute difference in methylation level between type 2 diabetes cases and controls ranged from 0·5% (SD 0·1) to 1·1% (0·2). Methylation markers at five loci were associated with future type 2 diabetes incidence; the relative risk per 1% increase in methylation was 1·09 (95% CI 1·07-1·11; p=1·3 × 10(-17)) for ABCG1, 0·94 (0·92-0·95; p=4·2 × 10(-11)) for PHOSPHO1, 0·94 (0·92-0·96; p=1·4 × 10(-9)) for SOCS3, 1·07 (1·04-1·09; p=2·1 × 10(-10)) for SREBF1, and 0·92 (0·90-0·94; p=1·2 × 10(-17)) for TXNIP. A methylation score combining results for the five loci was associated with future type 2 diabetes incidence (relative risk quartile 4 vs quartile 1 3·51, 95% CI 2·79-4·42; p=1·3 × 10(-26)), and was independent of established risk factors. Methylation score was higher among Indian Asians than Europeans (p=1 × 10(-34)). INTERPRETATION: DNA methylation might provide new insights into the pathways underlying type 2 diabetes and offer new opportunities for risk stratification and prevention of type 2 diabetes among Indian Asians. FUNDING: The European Union, the UK National Institute for Health Research, the Wellcome Trust, the UK Medical Research Council, Action on Hearing Loss, the UK Biotechnology and Biological Sciences Research Council, the Oak Foundation, the Economic and Social Research Council, Helmholtz Zentrum Munchen, the German Research Center for Environmental Health, the German Federal Ministry of Education and Research, the German Center for Diabetes Research, the Munich Center for Health Sciences, the Ministry of Science and Research of the State of North Rhine-Westphalia, and the German Federal Ministry of Health.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2/ethnology , Diabetes Mellitus, Type 2/genetics , Asian People , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Epigenesis, Genetic , Female , Genetic Markers , Genome-Wide Association Study , Humans , Male , Middle Aged , Prospective Studies , Risk Factors , White People
4.
BMC Gastroenterol ; 14: 55, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24674026

ABSTRACT

BACKGROUND: Methylation-induced silencing of promoter CpG islands in tumor suppressor genes plays an important role in human carcinogenesis. In colorectal cancer, the CpG island methylator phenotype (CIMP) is defined as widespread and elevated levels of DNA methylation and CIMP+ tumors have distinctive clinicopathological and molecular features. In contrast, the existence of a comparable CIMP subtype in gastric cancer (GC) has not been clearly established. To further investigate this issue, in the present study we performed comprehensive DNA methylation profiling of a well-characterised series of primary GC. METHODS: The methylation status of 1,421 autosomal CpG sites located within 768 cancer-related genes was investigated using the Illumina GoldenGate Methylation Panel I assay on DNA extracted from 60 gastric tumors and matched tumor-adjacent gastric tissue pairs. Methylation data was analysed using a recursively partitioned mixture model and investigated for associations with clinicopathological and molecular features including age, Helicobacter pylori status, tumor site, patient survival, microsatellite instability and BRAF and KRAS mutations. RESULTS: A total of 147 genes were differentially methylated between tumor and matched tumor-adjacent gastric tissue, with HOXA5 and hedgehog signalling being the top-ranked gene and signalling pathway, respectively. Unsupervised clustering of methylation data revealed the existence of 6 subgroups under two main clusters, referred to as L (low methylation; 28% of cases) and H (high methylation; 72%). Female patients were over-represented in the H tumor group compared to L group (36% vs 6%; P = 0.024), however no other significant differences in clinicopathological or molecular features were apparent. CpG sites that were hypermethylated in group H were more frequently located in CpG islands and marked for polycomb occupancy. CONCLUSIONS: High-throughput methylation analysis implicates genes involved in embryonic development and hedgehog signaling in gastric tumorigenesis. GC is comprised of two major methylation subtypes, with the highly methylated group showing some features consistent with a CpG island methylator phenotype.


Subject(s)
Adenocarcinoma/genetics , CpG Islands , DNA Methylation , Gene Expression Regulation, Neoplastic/genetics , Stomach Neoplasms/genetics , Adenocarcinoma/complications , Adenocarcinoma/metabolism , Age Factors , Aged , Case-Control Studies , Cyclin A1/genetics , Female , Helicobacter Infections/complications , Helicobacter pylori , Homeodomain Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Male , Membrane Proteins/genetics , Microsatellite Instability , Middle Aged , Phenotype , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras) , Sex Factors , Signal Transduction , Stomach Neoplasms/complications , Stomach Neoplasms/metabolism , ras Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...