Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 357(4): e2300673, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38247229

ABSTRACT

In the face of escalating challenges of microbial resistance strains, this study describes the design and synthesis of 5-({1-[(1H-1,2,3-triazol-4-yl)methyl]-1H-indol-3-yl}methylene)thiazolidine-2,4-dione derivatives, which have demonstrated significant antimicrobial properties. Compared with the minimum inhibitory concentrations (MIC) values of ciprofloxacin on the respective strains, compounds 5a, 5d, 5g, 5l, and 5m exhibited potent antibacterial activity with MIC values ranging from 16 to 25 µM. Almost all the synthesized compounds showed lower MIC compared to standards against vancomycin-resistant enterococcus and methicillin-resistant Staphylococcus aureus strains. Additionally, the majority of the synthesized compounds demonstrated remarkable antifungal activity, against Candida albicans and Aspergillus niger, as compared to nystatin, griseofulvin, and fluconazole. Furthermore, the majority of compounds exhibited notable inhibitory effects against the Plasmodium falciparum strain, having IC50 values ranging from 1.31 to 2.79 µM as compared to standard quinine (2.71 µM). Cytotoxicity evaluation of compounds 5a-q on SHSY-5Y cells at up to 100 µg/mL showed no adverse effects. Comparison with control groups highlights their noncytotoxic characteristics. Molecular docking confirmed compound binding to target active sites, with stable protein-ligand complexes displaying drug-like molecules. Molecular dynamics simulations revealed dynamic stability and interactions. Rigorous tests and molecular modeling unveil the effectiveness of the compounds against drug-resistant microbes, providing hope for new antimicrobial compounds with potential safety.


Subject(s)
Antimalarials , Methicillin-Resistant Staphylococcus aureus , Thiazolidinediones , Anti-Bacterial Agents/chemistry , Antimalarials/pharmacology , Triazoles/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship , Indoles/pharmacology , Microbial Sensitivity Tests , Molecular Structure
2.
Arch Pharm (Weinheim) ; 356(4): e2200545, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36534897

ABSTRACT

This study reports the design and synthesis of novel 1,2,4-triazolo/benzimidazolo-pyrimidine linked 1-benzyl-4-[(p-tolyloxy)methyl]-1,2,3-triazole derivatives as potent antimicrobial agents according to their in vitro antibacterial, antifungal, antitubercular as well as antimalarial activities. An efficient, ecologically benign, and facile multicomponent synthesis was employed to synthesize these derivatives. The synthesis is accelerated with the mild and eco-friendly organocatalyst tetrabutylammonium bromide, providing a yield of 82%-96% within the short reaction time of 0.5-1.5 h. Compared with the MIC values of ciprofloxacin and ampicillin on the respective strains, compound d2 showed better activity against Escherichia coli and Streptococcus pyogenes and compound d8 showed better MIC against Staphylococcus aureus. Additionally, compounds d3, d4, and d5 showed potent MIC values against Pseudomonas aeruginosa. All triazolo-pyrimidine derivatives d1-d8 showed potent inhibitory action against Gram-positive strains. Compound e3 showed good potency against Mycobacterium tuberculosis H37Rv. The IC50 values of d3 and e2 indicated better activity against Plasmodium falciparum. Collectively, these derivatives depict potent multifaceted activity and provide promising access for further antimicrobial and antimalarial investigations.


Subject(s)
Anti-Infective Agents , Antimalarials , Antimalarials/pharmacology , Structure-Activity Relationship , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Antitubercular Agents/pharmacology , Triazoles/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Pyrimidines/pharmacology , Benzimidazoles/pharmacology
3.
Mol Divers ; 26(2): 963-979, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33834361

ABSTRACT

An environment friendly, high yielding, promising one-pot protocol for the click reaction of N-propargyl-3-formylindole 2(a-b), chloroacetic acid/ester 3(a-b) and sodium azide, leading to the formation of 3-formyl-indole clubbed 1,4-disubstituted-1,2,3-triazole derivatives 4(a-b), 5(a-b) and 6(a-f) aided by CuI catalyst accomplished under acceleration of simultaneous ultrasound and microwave irradiation in a very short reaction time has been described. Further, acid derivative 4(a-b) is subjected to acid-amine coupling reaction with secondary amine (p-t) in the presence of HATU to afford 6(p-t) and 7(p-t). The perspective of this protocol is to get rid of the hectic preparation and handling of organic azide which are generated in situ. Consequently, this protocol blossoms the click process by making it environment benign, user-friendly, safe and clean technique. All the synthesized compounds have been preliminarily screen for their in vitro antimicrobial activity against a panel of pathogenic strains. The majority of compounds possess noticeably inhibitory action against E. Coli, S. Typhi, P. Aeruginosa, C. tetani, S. aureus and B. subtillis. Among all compounds, 6p and 7q exhibit excellent inhibitory action against E.Coli and P. Aeruginosa strain, respectively, as compared to standard drug. One compound 5b shows remarkable potency against fungal strain. Molecular docking study was carried out to understand binding of compound with protein. In silico ADME prediction was carried out to check physicochemical properties of synthesized compound.


Subject(s)
Click Chemistry , Microwaves , Amines , Click Chemistry/methods , Escherichia coli , Indoles/pharmacology , Molecular Docking Simulation , Staphylococcus aureus , Triazoles/chemistry , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...