Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 931-945, 2024 02.
Article in English | MEDLINE | ID: mdl-37542532

ABSTRACT

Polychlorinated biphenyl (PCB) is potentially harmful environmental toxicant causing cognitive decline with depressive features. PCB-induced behavioral deficits are associated with neurochemical dysfunctions, immune changes, and oxidative stress. This study investigated the neuroprotective effects of D-ribose-L-cysteine (DRLC), a neuroprotective precursor element of glutathione on PCB-induced neurobehavioral impairments. Following the initial 15 days of PCB (2 mg/kg) exposure to rats, DRLC (50 mg/kg) was given orally for an additional 15 days, from days 16 to 30. Animals were assessed for behavioral effect such as changes in locomotion, cognition, and depression. Oxidative/nitrergic stress markers; antioxidant regulatory proteins paraoxonase-1 (PON-1), heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nfr2), NADPH oxidase-1 (NOX-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and neuroinflammation (NF-kß, and TNF-α); and neurochemical metabolizing enzymes (acetylcholinesterase (AChE), monoamine oxidase-A and -B (MAO-A, MAO-B)) were carried out. The PCB-induced decline in locomotion, cognitive performance, and depressive-like features were reversed by DRLC. More specifically, PCB-induced oxidative and nitrergic stress, typified by reduced levels GSH, CAT, and SOD, accompanied by elevated MDA and nitrite were attenuated by DRLC. Additionally, DRLC restored the neuroinflammatory milieu indicated by decreased NF-kß and TNF-α levels toward normal. Hyperactivities of AChE, MAO-A, MAO-B, PON-1, and NOX-1 levels as well as Nfr2, NQO1, and PON-1 due to PCB exposure were mitigated by DLRC. Our results suggest DRLC as a prospective neurotherapeutic agent against PCB-induced neurobehavioral impairments such as cognitive deficit and depressive-like feature through antioxidative and anti-nitrergic stress, anti-neuroinflammation, inhibition of brain metabolizing enzymes, and normalization of neurochemical homeostasis.


Subject(s)
Cysteine/analogs & derivatives , Polychlorinated Biphenyls , Thiazolidines , Rats , Animals , Polychlorinated Biphenyls/pharmacology , Acetylcholinesterase/metabolism , Tumor Necrosis Factor-alpha/metabolism , Prospective Studies , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Glutathione/metabolism , Monoamine Oxidase/metabolism
2.
J Psychiatr Res ; 168: 165-175, 2023 12.
Article in English | MEDLINE | ID: mdl-37913743

ABSTRACT

Geraniol is an acyclic isoprenoid monoterpenoid analogue that has been shown to elicit neuroprotective functions, primarily through its ability to stimulate antioxidant and anti-inflammatory systems. An increase in inflammatory cytokines and oxidative stress exacerbate activation hypothalamic-pituitary-adrenal axis (HPA), leading to neurochemical dysfunction, which has important roles in the pathogenesis of post-traumatic disorder (PTSD), a mental health disorder characterized of post-trauma-induced intense fear. The aim of this study was to evaluate the anti-PTSD-like effects and underlying mechanisms of geraniol against single-prolonged-stress (SPS)-induced PTSD in mice. Following concomitant exposure to SPS (triple-paradigm traumatic events) and isolation for 7 days, mice (n = 9) were treated with geraniol (50 and 100 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.) from days 8-21. Mice were assessed for behavioral changes. Neurochemical changes, inflammatory, oxido-nitrergic markers, adrenal weight, serum glucose and corticosterone concentrations were assayed. Geraniol inhibits SPS-induced anxiety- and depressive-like features as well as behavioral despair in the depression paradigms. SPS-induced locomotor and memory impairments were also abated by geraniol treatment similarly to fluoxetine. SPS-induced adrenal hypertrophy and increased blood glucose and corticosterone concentrations, were attenuated by the geraniol treatment. Elevated levels of TNF-α and IL-6, and malondialdehyde, nitrite, acetylcholinesterase enzyme were reduced by geraniol. Geraniol also increased glutathione, superoxide-dismutase, and catalase levels as well as dopamine, serotonin concentrations and GABAergic glutamic acid decarboxylase enzyme activity in the striatum, prefrontal cortex and hippocampus in the PTSD-mice relative to SPS control. In conclusion, geraniol attenuates behavioral impairments and neurochemical dysregulations by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to PTSD.


Subject(s)
Stress Disorders, Post-Traumatic , Mice , Animals , Stress Disorders, Post-Traumatic/etiology , Fluoxetine/pharmacology , Corticosterone , Hypothalamo-Hypophyseal System , Acetylcholinesterase/pharmacology , Disease Models, Animal , Pituitary-Adrenal System , Hippocampus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...