Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(26): 34057-34068, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38910292

ABSTRACT

The current longevity of dental resins intraorally is limited by susceptibility to acidic attacks from bacterial metabolic byproducts and vulnerability to enzymatic or hydrolytic degradation. Here, we demonstrate synthesizing an ionic liquid-based antibiofilm silane effective against Streptococcus mutans, a major caries pathogen. Furthermore, we incorporate this silane into dental resins, creating antibiofilm- and degradation-resistant materials applicable across resin types. FTIR, UV-vis, and NMR spectroscopy confirmed the synthesis of the expected ionic liquid-based silane. The characterization of SiO2 after the silanization indicated the presence of the silane and how it interacted with the oxide. All groups achieved a degree of conversion similar to that found for commercial resin composites immediately and after two months of storage in water. The minimum of 2.5 wt % of silane led to lower softening in solvent than the control group (GCTRL) (p < 0.05). While the flexural strength indicated a lower value from 1 wt % of silane compared to GCTRL (p < 0.05), the ultimate tensile strength did not indicate differences among groups (p > 0.05). There was no difference within groups between the immediate and long-term tests of flexural strength (p > 0.05) or ultimate tensile strength (p > 0.05). The addition of at least 5 wt % of silane reduced the viability of S. mutans compared to GCTRL (p < 0.05). The fluorescence microscopy analysis suggested that the higher the silane concentration, the higher the amount of bacteria with membrane defects. There was no difference among groups in the cytotoxicity test (p > 0.05). Therefore, the developed dental resins displayed biocompatibility, proper degree of conversion, improved resistance against softening in solvent, and stability after 6 months of storage in water. This material could be further developed to produce polymeric antimicrobial layers for different surfaces, supporting various potential avenues in developing novel biomaterials with enhanced therapeutic characteristics using ionic liquid-based materials.


Subject(s)
Ionic Liquids , Nanoparticles , Silanes , Silicon Dioxide , Streptococcus mutans , Silanes/chemistry , Silanes/pharmacology , Streptococcus mutans/drug effects , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Composite Resins/chemistry , Composite Resins/pharmacology , Mice , Biofilms/drug effects , Tensile Strength
2.
ACS Appl Mater Interfaces ; 16(2): 2120-2139, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170561

ABSTRACT

The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.


Subject(s)
Silanes , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Surface Properties , Chlorhexidine/chemistry , Anti-Bacterial Agents/pharmacology , Dental Cements/pharmacology , Dental Materials , Magnetic Phenomena , Dentin , Materials Testing , Tensile Strength
3.
Bioengineering (Basel) ; 10(9)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37760093

ABSTRACT

OBJECTIVES: Composites are commonly used for tooth restorations, but recurrent caries often lead to restoration failures due to polymerization shrinkage-stress-induced marginal leakage. The aims of this research were to: (1) develop novel low-shrinkage-stress (L.S.S.) nanocomposites containing dimethylaminododecyl methacrylate (DMADDM) with nanoparticles of calcium fluoride (nCaF2) or amorphous calcium phosphate (NACP) for remineralization; (2) investigate antibacterial and cytocompatibility properties. METHODS: Nanocomposites were made by mixing triethylene glycol divinylbenzyl ether with urethane dimethacrylate containing 3% DMADDM, 20% nCaF2, and 20% NACP. Flexural strength, elastic modulus, antibacterial properties against Streptococcus mutans biofilms, and cytotoxicity against human gingival fibroblasts and dental pulp stem cells were tested. RESULTS: Nanocomposites with DMADDM and nCaF2 or NACP had flexural strengths matching commercial composite control without bioactivity. The new nanocomposite provided potent antibacterial properties, reducing biofilm CFU by 6 logs, and reducing lactic acid synthesis and metabolic function of biofilms by 90%, compared to controls (p < 0.05). The new nanocomposites produced excellent cell viability matching commercial control (p > 0.05). CONCLUSIONS: Bioactive L.S.S. antibacterial nanocomposites with nCaF2 and NACP had excellent bioactivity without compromising mechanical and cytocompatible properties. The new nanocomposites are promising for a wide range of dental restorations by improving marginal integrity by reducing shrinkage stress, defending tooth structures, and minimizing cariogenic biofilms.

4.
Biomedicines ; 11(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37238927

ABSTRACT

Damage in the bonding interface is a significant factor that leads to premature failure of dental bonded restorations. The imperfectly bonded dentin-adhesive interface is susceptible to hydrolytic degradation and bacterial and enzyme attack, severely jeopardizing restorations' longevity. Developing caries around previously made restorations, also called "recurrent or secondary caries," is a significant health problem. The replacement of restorations is the most prevailing treatment in dental clinics, leading to the so-called "tooth death spiral". In other words, every time a restoration is replaced, more tooth tissue is removed, increasing the size of the restorations until the tooth is eventually lost. This process leads to high financial costs and detriment to patients' quality of life. Since the complexity of the oral cavity makes prevention a challenging task, novel strategies in Dental Materials and Operative fields are required. This article briefly overviews the physiological dentin substrate, features of dentin bonding, challenges and clinical relevance. We discussed the anatomy of the dental bonding interface, aspects of the degradation at the resin-dentin interface, extrinsic and intrinsic factors affecting dental bonding longevity, perspectives on resin and collagen degradation and how these subjects are connected. In this narrative review, we also outlined the recent progress in overcoming dental bonding challenges through bioinspiration, nanotechnology and advanced techniques to reduce degradation and improve dental bonding longevity.

5.
Clin Oral Investig ; 27(6): 2465-2481, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37017759

ABSTRACT

OBJECTIVES: The aim of this review to overview three-dimensional (3D) printing technologies available for different dental disciplines, considering the applicability of such technologies and materials development. MATERIALS AND METHODS: Source Arksey and O'Malley's five stages framework using PubMed, EMBASE, and Scopus (Elsevier) databases managed this review. Papers focusing on 3D printing in dentistry and written in English were screened. Scientific productivity by the number of publications, areas of interest, and the focus of the investigations in each dental discipline were extracted. RESULTS: Nine hundred thirty-four studies using 3D printing in dentistry were assessed. Limited clinical trials were observed, especially in Restorative, endodontics, and pediatric dentistry. Laboratory or animal studies are not reliable for clinical success, suggesting that clinical trials are a good approach to validate the new methods' outcomes and ensure that the benefits outweigh the risk. The most common application for 3D printing technologies is to facilitate conventional dental procedures. CONCLUSIONS: The constantly improving quality of 3D printing applications has contributed to increasing the popularity of these technologies in dentistry; however, long-term clinical studies are necessary to assist in defining standards and endorsing the safe application of 3D printing in dental practice. CLINICAL RELEVANCE: The recent progress in 3D materials has improved dental practice capabilities over the last decade. Understanding the current status of 3D printing in dentistry is essential to facilitate translating its applications from laboratory to the clinical setting.


Subject(s)
Endodontics , Printing, Three-Dimensional , Humans , Pediatric Dentistry , Dental Care
6.
Dent Clin North Am ; 66(4): 551-566, 2022 10.
Article in English | MEDLINE | ID: mdl-36216446

ABSTRACT

Bioactive materials for dental resin restorations are a rising field of investigation exploring treatment strategies for reducing the recurrence of carious lesions. The current effort has been directed toward developing dental materials that can inhibit biofilms and prevent tooth mineral loss. Bioactive resin materials have shown the potential to interfere with polymicrobial consortia in vivo and help maintain the lifespan of restorations.


Subject(s)
Composite Resins , Dental Caries , Biofilms , Composite Resins/therapeutic use , Dental Caries/prevention & control , Dental Materials/therapeutic use , Dental Restoration, Permanent , Humans
7.
J Funct Biomater ; 13(4)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36278659

ABSTRACT

Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A dental adhesive was doped with BDMDAC in the concentration range of 1-5 wt.%. For antibacterial assays, the BDMDAC compound was subject to planktonic cells of Streptococcus mutans. Then, after incorporation into the dental adhesive, an S. mutans biofilm model was used to grow 48 h-mature biofilms. The biofilms grown over the formulated materials were assessed by colony-forming unit (CFU) counting assay and fluorescence microscopy staining. In addition, the cytotoxicity was evaluated. Samples were subjected to 10,000 thermal cycles for aging and evaluated by UTS, µTBS, and CFU. Incorporating BDMDAC did not increase the cytotoxicity or change the physical properties when the mass fraction of the BDMDAC was 1-5 wt.%. The UTS of BDMDAC-doped adhesives was not impaired immediately or over time. A significant bacterial reduction was obtained for the mass fraction of the BDMDAC greater than 3 wt.%. However, the BDMDAC-doped adhesives did not offer an antibacterial effect after artificial aging. The overall results indicate that the BDMDAC strategy has the potential to control of microbial growth of cariogenic planktonic cells and biofilms. However, other new technological approaches are needed to overcome the deleterious effect of BDMDAC release over time such as those based on the principle of drug delivery systems whereby the BDMDAC is transported on microparticles or core shells, providing tangible benefits to oral health over time.

8.
ACS Nano ; 15(12): 19888-19904, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34878250

ABSTRACT

Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.


Subject(s)
Dental Caries , Photochemotherapy , Anti-Bacterial Agents/pharmacology , Biofilms , Dental Caries/drug therapy , Humans , Industrial Development , Magnetic Phenomena , Photosensitizing Agents/pharmacology , Streptococcus mutans
9.
Dent J (Basel) ; 9(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34940040

ABSTRACT

The use of herbal products in oral hygiene care has a long history, and their use is popular today. A tree stick, named Salvadora persica (S. persica), is commonly used to remove dental plaque and clean teeth in many countries. In addition, extracts of S. persica can be used as a mouthwash, as they demonstrate antimicrobial properties. This study aimed to investigate the antibacterial effect of S. persica methanol and aqueous extracts against Streptococcus mutans (S. mutans) biofilm. A S. mutans biofilm formation assay was conducted using different concentrations of S. persica methanol or water extracts in tryptic soy broth (TSB) supplemented with 1% sucrose. The biofilm was stained with crystal violet dye, and the absorbance was assessed to examine biofilm formation. One-way analysis of variance (ANOVA) and Tukey tests were used to analyze the results. The S. persica methanol extract displayed a significant inhibition (p ≤ 0.001) against the S. mutans biofilm. The 10 mg/mL concentration of the S. persica methanol extract was determined as the minimum biofilm inhibitory concentration (MBIC). The used methanol concentration, mixed with TSB supplemented with 1% sucrose and without the S. persica extract, did not inhibit the S. mutans biofilm. The S. persica aqueous extract did not demonstrate any biofilm inhibition at any concentration (p ≥ 0.05). The findings of this study suggest the potential of using S. persica methanol extract as a mouthwash or adjunctive to oral hygiene tools.

10.
Bioengineering (Basel) ; 8(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34677219

ABSTRACT

Advances in nanotechnology have unlocked exclusive and relevant capabilities that are being applied to develop new dental restorative materials. Metal oxide nanoparticles and nanotubes perform functions relevant to a range of dental purposes beyond the traditional role of filler reinforcement-they can release ions from their inorganic compounds damaging oral pathogens, deliver calcium phosphate compounds, provide contrast during imaging, protect dental tissues during a bacterial acid attack, and improve the mineral content of the bonding interface. These capabilities make metal oxide nanoparticles and nanotubes useful for dental adhesives and composites, as these materials are the most used restorative materials in daily dental practice for tooth restorations. Secondary caries and material fractures have been recognized as the most common routes for the failure of composite restorations and bonding interface in the clinical setting. This review covers the significant capabilities of metal oxide nanoparticles and nanotubes incorporated into dental adhesives and composites, focusing on the novel benefits of antibacterial properties and how they relate to their translational applications in restorative dentistry. We pay close attention to how the development of contemporary antibacterial dental materials requires extensive interdisciplinary collaboration to accomplish particular and complex biological tasks to tackle secondary caries. We complement our discussion of dental adhesives and composites containing metal oxide nanoparticles and nanotubes with considerations needed for clinical application. We anticipate that readers will gain a complete picture of the expansive possibilities of using metal oxide nanoparticles and nanotubes to develop new dental materials and inspire further interdisciplinary development in this area.

11.
Front Oral Health ; 2: 628026, 2021.
Article in English | MEDLINE | ID: mdl-35047992

ABSTRACT

Bioactive materials can reduce caries lesions on the marginal sealed teeth by providing the release of ions, such as calcium, phosphate, fluoride, zinc, magnesium, and strontium. The presence of such ions affects the dissolution balance of hydroxyapatite, nucleation, and epitaxial growth of its crystals. Previous studies mostly focused on the ion-releasing behavior of bioactive materials. Little is known about their wear behavior sealed tooth under mastication. This study aimed to evaluate the wear behavior and surface quality of dental bioactive resins under a simulated chewing model and compare them with a resin without bioactive agents. Three bioactive resins (Activa, BioCoat, and Beautifil Flow-Plus) were investigated. A resin composite without bioactive agents was used as a control group. Each resin was applied to the occlusal surface of extracted molars and subjected to in vitro chewing simulation model. We have assessed the average surface roughness (Ra), maximum high of the profile (Rt), and maximum valley depth (Rv) before and after the chewing simulation model. Vickers hardness and scanning electron microscopy (SEM) also analyzed the final material surface quality). Overall, all groups had increased surface roughness after chewing simulation. SEM analysis revealed a similar pattern among the materials. However, the resin with polymeric microcapsules doped with bioactive agents (BioCoat) showed increased surface roughness parameters. The material with Surface Pre-reacted Glass Ionomer (Beautifil Flow-Plus) showed no differences compared to the control group and improved microhardness. The addition of bioactive agents may influence surface properties, impairing resin composites' functional and biological properties. Future studies are encouraged to analyze bioactive resin composites under high chemical and biological challenges in vitro with pH cycles or in situ models.

12.
J Oral Sci ; 63(1): 75-78, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33311010

ABSTRACT

The purpose of this study was to explore the effects of nicotine on the activity of Streptococcus mutans (S. mutans) in soft drinks. Regular soft drinks contain large proportions of high-fructose corn syrup (HFCS), which increases the activity of S. mutans resulting in high-caries risk compared with sugar-free soft drinks. Nicotine use exhibits a strong correlation with increased S. mutans biofilm formation. The soft drinks chosen were (Coca-Cola Classic, Diet Coke, Coca-Cola Zero Sugar, Caffeine-Free Coca-Cola, Caffeine-Free Diet Coke, Caffeine-Free Coca-Cola Zero Sugar). S. mutans was grown overnight in tryptic soy broth; nicotine was diluted in tryptic soy broth supplemented with 1.0% sucrose followed by soft drinks in dilution of 1:3. Total growth absorbance and biofilm growth were determined by spectrophotometry, absorbance measured to determine biofilm formation, and metabolic activity quantified. One-way ANOVA showed a considerable effect for HFCS and caffeine in the presence of nicotine and their interaction in all measures. Results showed sugar-free caffeinated colas demonstrated significant effect in inhibiting S. mutans biofilm formation and metabolic activity with nicotine. Nicotine-induced S. mutans increased biofilm formation and metabolic activity in the presence of HFCS and caffeine in soft drinks. In conclusion, smokers should consider sugar-free caffeinated versions to minimize the chance of developing dental caries dut to the reduction of biofilm formation.


Subject(s)
Dental Caries , Streptococcus mutans , Biofilms , Carbonated Beverages/adverse effects , Humans , Nicotine
13.
Am J Dent ; 33(1): 12-16, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056409

ABSTRACT

PURPOSE: To evaluate the in vitro effects of commercially available charcoal dentifrices on Streptococcus mutans biofilm development and their ability to prevent enamel demineralization. METHODS: Streptococcus mutans biofilm was formed on polished bovine enamel specimens (n= 9 per treatment), and treated twice-daily for 120 seconds over the course of 5 days with: charcoal dentifrice containing fluoride (1,000 ppm F) (CF+), fluoride-free charcoal dentifrice (CF-), regular fluoride (1,100 ppm F) dentifrice (F+ ), or regular fluoride-free dentifrice (F-). Chlorhexidine (CHX, 0.12%) and deionized water (DIW) were used as positive and negative controls, respectively. Biofilms were analyzed for bacterial viability (colony-forming units, CFU). The pH of the medium was measured daily. Enamel specimens were analyzed using Vickers microhardness ( HV) and transversal microradiography (TMR). Data were analyzed using one-way ANOVA followed by post-hoc tests (α= 0.05). RESULTS: F+ showed higher pH values than CF+ and CF-, and CF- presented higher pH than CF+, showing that CF+ did not have inhibitory effects on the acidogenicity of cariogenic biofilms. CFU was significantly decreased when specimens were treated with CF+, CF- and F+, compared to specimens treated with DIW (P≤ 0.035) or F- (P≤ 0.001), respectively. However, the reduction observed was minimal (approximately 1 log). CF+ and CF- were less effective than F+ in preventing enamel demineralization as determined using HV (P= 0.041 and P= 0.003, respectively) and TMR ( P≤ 0.001). Both charcoal dentifrices (CF+, CF-) did not show relevant inhibition of S. mutans biofilm growth. Additionally, neither product prevented enamel demineralization compared to a regular fluoride-containing dentifrice. CLINICAL SIGNIFICANCE: The tested charcoal dentifrices did not exhibit anticaries potential.


Subject(s)
Dentifrices , Tooth Demineralization , Animals , Biofilms , Cariostatic Agents , Cattle , Charcoal , Dental Enamel , Fluorides , Sodium Fluoride , Streptococcus mutans , Tooth Remineralization
14.
J Contemp Dent Pract ; 18(6): 474-478, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28621277

ABSTRACT

AIM: The aim was to evaluate the effect of botulinum toxin (Botox) injections as a conservative treatment for gummy smile. MATERIALS AND METHODS: An experimental in vivo study was conducted at a dermatology clinic in Riyadh in January 2016. The study included 23 female patients who ranged from 20 to 50 years and were treated with Botox injections due to excessive maxillary gingival display. The patients with short clinical crowns or long maxilla, those who were pregnant or breastfeeding, and patients with neuromuscular disorders were excluded. Patients received Botox type I, injected 3 mm lateral to the alar-fascial groove at the level of the nostril opening at the insertion of the levator labii superioris alaeque nasi muscle. Photos were taken of the patient's smile before and after the treatment and were then uploaded to the SketchUp program to calculate improvements in gingival display. The distance from the lower margin of the upper lip to the gingival margin was calculated pre- and posttreatment. The amount of improvement was calculated as (pre-Botox treatment - post-Botox treatment/pre-Botox treatment × 100). The mean percentage of the total improvement was analyzed. RESULTS: A total of 23 female patients received treatment to improve their gummy smile. Improvement was clear 2 weeks after Botox injection. The mean percentage of improvement in the gingival display was 99.6%. CONCLUSION: Botox type I is an effective conservative technique to improve gummy smile caused by muscular hyperfunction. CLINICAL SIGNIFICANCE: Patients' retention highly indicated that they were satisfied with the provided treatment by Botox injections. Improving the quality of life with least painful experience and immediate results was the major advantage for Botox type I.


Subject(s)
Botulinum Toxins, Type A/administration & dosage , Esthetics, Dental , Neuromuscular Agents/administration & dosage , Smiling , Adult , Female , Humans , Injections, Intramuscular , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...