Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2120-2139, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38170561

ABSTRACT

The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.


Subject(s)
Silanes , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Surface Properties , Chlorhexidine/chemistry , Anti-Bacterial Agents/pharmacology , Dental Cements/pharmacology , Dental Materials , Magnetic Phenomena , Dentin , Materials Testing , Tensile Strength
2.
Biomedicines ; 11(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37238927

ABSTRACT

Damage in the bonding interface is a significant factor that leads to premature failure of dental bonded restorations. The imperfectly bonded dentin-adhesive interface is susceptible to hydrolytic degradation and bacterial and enzyme attack, severely jeopardizing restorations' longevity. Developing caries around previously made restorations, also called "recurrent or secondary caries," is a significant health problem. The replacement of restorations is the most prevailing treatment in dental clinics, leading to the so-called "tooth death spiral". In other words, every time a restoration is replaced, more tooth tissue is removed, increasing the size of the restorations until the tooth is eventually lost. This process leads to high financial costs and detriment to patients' quality of life. Since the complexity of the oral cavity makes prevention a challenging task, novel strategies in Dental Materials and Operative fields are required. This article briefly overviews the physiological dentin substrate, features of dentin bonding, challenges and clinical relevance. We discussed the anatomy of the dental bonding interface, aspects of the degradation at the resin-dentin interface, extrinsic and intrinsic factors affecting dental bonding longevity, perspectives on resin and collagen degradation and how these subjects are connected. In this narrative review, we also outlined the recent progress in overcoming dental bonding challenges through bioinspiration, nanotechnology and advanced techniques to reduce degradation and improve dental bonding longevity.

3.
J Funct Biomater ; 13(4)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36278659

ABSTRACT

Current dental adhesives lack antibacterial properties. This study aimed to explore the effect of incorporating benzyldimethyldodecyl ammonium chloride (BDMDAC) on the degree of conversion, contact angle, ultimate tensile strength (UTS), microtensile bond strength (µTBS), cytotoxicity, antibacterial and bonding performance after artificial aging. A dental adhesive was doped with BDMDAC in the concentration range of 1-5 wt.%. For antibacterial assays, the BDMDAC compound was subject to planktonic cells of Streptococcus mutans. Then, after incorporation into the dental adhesive, an S. mutans biofilm model was used to grow 48 h-mature biofilms. The biofilms grown over the formulated materials were assessed by colony-forming unit (CFU) counting assay and fluorescence microscopy staining. In addition, the cytotoxicity was evaluated. Samples were subjected to 10,000 thermal cycles for aging and evaluated by UTS, µTBS, and CFU. Incorporating BDMDAC did not increase the cytotoxicity or change the physical properties when the mass fraction of the BDMDAC was 1-5 wt.%. The UTS of BDMDAC-doped adhesives was not impaired immediately or over time. A significant bacterial reduction was obtained for the mass fraction of the BDMDAC greater than 3 wt.%. However, the BDMDAC-doped adhesives did not offer an antibacterial effect after artificial aging. The overall results indicate that the BDMDAC strategy has the potential to control of microbial growth of cariogenic planktonic cells and biofilms. However, other new technological approaches are needed to overcome the deleterious effect of BDMDAC release over time such as those based on the principle of drug delivery systems whereby the BDMDAC is transported on microparticles or core shells, providing tangible benefits to oral health over time.

SELECTION OF CITATIONS
SEARCH DETAIL
...