Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 7(8): 2661-2670, 2017 04.
Article in English | MEDLINE | ID: mdl-28428857

ABSTRACT

The magnitude of impacts some alien species cause to native environments makes them targets for regulation and management. However, which species to target is not always clear, and comparisons of a wide variety of impacts are necessary. Impact scoring systems can aid management prioritization of alien species. For such tools to be objective, they need to be robust to assessor bias. Here, we assess the newly proposed Environmental Impact Classification for Alien Taxa (EICAT) used for amphibians and test how outcomes differ between assessors. Two independent assessments were made by Kraus (Annual Review of Ecology Evolution and Systematics, 46, 2015, 75-97) and Kumschick et al. (Neobiota, 33, 2017, 53-66), including independent literature searches for impact records. Most of the differences between these two classifications can be attributed to different literature search strategies used with only one-third of the combined number of references shared between both studies. For the commonly assessed species, the classification of maximum impacts for most species is similar between assessors, but there are differences in the more detailed assessments. We clarify one specific issue resulting from different interpretations of EICAT, namely the practical interpretation and assigning of disease impacts in the absence of direct evidence of transmission from alien to native species. The differences between assessments outlined here cannot be attributed to features of the scheme. Reporting bias should be avoided by assessing all alien species rather than only the seemingly high-impacting ones, which also improves the utility of the data for management and prioritization for future research. Furthermore, assessments of the same taxon by various assessors and a structured review process for assessments, as proposed by Hawkins et al. (Diversity and Distributions, 21, 2015, 1360), can ensure that biases can be avoided and all important literature is included.

2.
PeerJ ; 3: e1204, 2015.
Article in English | MEDLINE | ID: mdl-26336644

ABSTRACT

Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.

SELECTION OF CITATIONS
SEARCH DETAIL
...