Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0302015, 2024.
Article in English | MEDLINE | ID: mdl-38728332

ABSTRACT

Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1ß, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.


Subject(s)
Indomethacin , MAP Kinase Signaling System , Oxidative Stress , Plant Extracts , Stomach Ulcer , Tamaricaceae , Stomach Ulcer/drug therapy , Stomach Ulcer/chemically induced , Stomach Ulcer/metabolism , Stomach Ulcer/pathology , Animals , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Indomethacin/adverse effects , Indomethacin/toxicity , Rats , Tamaricaceae/chemistry , MAP Kinase Signaling System/drug effects , Male , Plant Leaves/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Rats, Sprague-Dawley , Network Pharmacology , Gastric Mucosa/metabolism , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Anti-Ulcer Agents/pharmacology , Anti-Ulcer Agents/therapeutic use , Anti-Ulcer Agents/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry
2.
BMC Complement Med Ther ; 24(1): 88, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355510

ABSTRACT

BACKGROUND: Gastric ulcers represent a worldwide health problem, characterized by erosions that affect the mucous membrane of the stomach and may even reach the muscular layer, leading to serious complications. Numerous natural products have been assessed as anti-ulcerogenic agents, and have been considered as new approaches for treatment or prevention of gastric ulcers. The present research investigated the preventive benefits of Apium graveolens L. (Apiaceae), known as celery, seed extract towards indomethacin-induced ulceration of the stomach in rats. METHODS: Metabolomic profiling, employing liquid chromatography coupled to high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), was implemented with the aim of investigating the chemical profile of the seeds. Histopathological analysis of gastric tissues, as well as assessment of numerous inflammatory cytokines and oxidative stress indicators, confirmed the in vivo evaluation. RESULTS: The prior treatment with A. graveolens seed extract resulted in a substantial reduction in the ulcer index when compared to the indomethacin group, indicating an improvement in stomach mucosal injury. Moreover, the gastroprotective effect was demonstrated through examination of the oxidative stress biomarkers which was significantly attenuated upon pre-treatment with A. graveolens seed extract. Vascular endothelial growth factor (VEGF), a fundamental angiogenic factor that stimulates angiogenesis, was markedly inhibited by indomethacin. A. graveolens seed extract restored this diminished level of VEGF. The dramatic reductions in NF-κB protein levels indicate a considerable attenuation of the indomethacin-induced IKκB/NF-κB p65 signaling cascade. These activities were also correlated to the tentatively featured secondary metabolites including, phenolic acids, coumarins and flavonoids, previously evidenced to exert potent anti-inflammatory and antioxidant activities. According to our network pharmacology study, the identified metabolites annotated 379 unique genes, among which only 17 genes were related to gastric ulcer. The PTGS2, MMP2 and PTGS1 were the top annotated genes related to gastric ulcer. The top biological pathway was the VEGF signaling pathway. CONCLUSION: A. graveolens seed extract possesses significant anti-ulcer activity, similar to famotidine, against gastric lesions induced by indomethacin in rats. It is worth highlighting that the extract overcomes the negative effects of conventional chemical anti-secretory drugs because it does not lower stomach acidity.


Subject(s)
Anti-Ulcer Agents , Apium , Stomach Ulcer , Rats , Animals , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Indomethacin/adverse effects , Apium/metabolism , Vascular Endothelial Growth Factor A , NF-kappa B/metabolism , Anti-Ulcer Agents/adverse effects , Plant Extracts/therapeutic use , Signal Transduction
3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37895849

ABSTRACT

Natural products such as domestic herbal drugs which are easily accessible and cost-effective can be used as a complementary treatment in mild and moderate COVID-19 cases. This study aimed to detect and describe the efficiency of phenolics detected in the galangal-cinnamon mixture in the inhibition of SARS-CoV-2's different protein targets. The potential antiviral effect of galangal-cinnamon aqueous extract (GCAE) against Low Pathogenic HCoV-229E was assessed using cytopathic effect inhibition assay and the crystal violet method. Low Pathogenic HCoV-229E was used as it is safer for in vitro laboratory experimentation and due to the conformation and the binding pockets similarity between HCoV-229E and SARS-CoV-2 MPro. The GCAE showed a significant antiviral effect against HCoV-229E (IC50 15.083 µg/mL). Twelve phenolic compounds were detected in the extract with ellagic, cinnamic, and gallic acids being the major identified phenolic acids, while rutin was the major identified flavonoid glycoside. Quantum-chemical calculations were made to find molecular properties using the DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum-chemical values such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, softness, and electronegativity values were calculated and discussed. Phenolic compounds detected by HPLC-DAD-UV in the GCAE were docked into the active site of 3 HCoV-229E targets (PDB IDs. 2ZU2, 6U7G, 7VN9, and 6WTT) to find the potential inhibitors that block the Coronavirus infection pathways from quantum and docking data for these compounds. There are good adaptations between the theoretical and experimental results showing that rutin has the highest activity against Low Pathogenic HCoV-229E in the GCAE extract.

4.
ACS Omega ; 8(36): 32544-32554, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720803

ABSTRACT

The purpose of this study is to explore the anti-inflammatory activity of Pterocarpus dalbergioides fruit extract (PFE) and the underlying mechanism. Chemical profiling using ultraperformance liquid chromatography/mass spectrometry identified 28 compounds in PFE (12 flavonoids, 5 fatty acids, 4 phenolic compounds, 3 alkaloids, 2 sesquiterpenes, and 2 xanthophylls). PFE (2 g/kg) significantly inhibited carrageenan-induced rat paw edema after 4 h of administration (42% inhibition). A network-based strategy and molecular docking studies were utilized to uncover the anti-inflammatory mechanism. Out of the identified compounds, 16 compounds with DL ≥ 0.18 and F ≥ 30% were selected using bioavailability (F) and drug-likeness (DL) metrics. The network analysis revealed that 90 genes are considered key targets for the selected compounds and linked to the anti-inflammatory effect. Among all compounds, linoleic acid was found to be the top-most active constituent as it targets maximum genes. Four targets (TNF, IL6, AKT1, and CCL2) among the top 10 genes were found to be the main target genes that may contribute to the anti-inflammatory potential of PFE. Furthermore, KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis revealed that PFE might regulate inflammation through five pathways: neuroactive ligand-receptor interaction, lipid and atherosclerosis, fluid shear stress and atherosclerosis, TNF signaling pathway, and rheumatoid arthritis. The docking study predicted the significant binding affinity between the top four active constituents (linoleic acid, 9-octadecenoic acid, 11,12,13-trihydroxy-9-octadecenoic acid, and rhamnetin-3-O-rhamnoside) and the selected target proteins (TNF and AKT1). The findings highlight PFE as a promising drug lead for controlling inflammation.

5.
Artif Cells Nanomed Biotechnol ; 51(1): 419-427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589599

ABSTRACT

In order to load metformin in a nano formula and evaluate the produced nano form towards cancer cells, metformin was loaded on natural carrier coconut oil. The formed metformin-loaded coconut oil nanoemulsion was characterized by Zeta potential, particle size, drug content, drug release, and drug stability. The formed nanoemulsion was evaluated towards MCF-7, HepG2, and HCT-116 cell lines. Cell cycle analysis and apoptosis mechanism were studied. The nanoemulsion was created using deionized water, 1.5% Span 20, 1.5% Tween 80, 1.5% coconut oil, and 0.5% Metformin in an ultrasonicator to produce a homogenous solution. The anticancer activities of the metformin-loaded coconut nanoemulsion were highly improved compared to non-formulated metformin with IC50s of 8.3 ± 0.1 µg/ml, 12 ± 1.5 µg/ml, 2.685 ± 0.3 µg/ml for MCF-7, HepG2, and HCT-116 cell lines, respectively. There was a 76.5 ± 2.3 and 78.3 ± 3.2% increase in the number of apoptotic cells of MCF-7 and HepG2 cells after nanoemulsion treatment. This formula may be considered a new anticancer medication.


Subject(s)
Apoptosis , Metformin , Humans , Coconut Oil/pharmacology , HCT116 Cells , MCF-7 Cells , Cocos , Metformin/pharmacology
6.
Antioxidants (Basel) ; 11(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35883720

ABSTRACT

One of the most severe human health problems is gastric ulceration. The main aim of our study is to explore the gastroprotective effect of the Psidium guajava seeds extract (PGE). Metabolic profiling based on LC-HRMS for the extract led to the dereplication of 23 compounds (1-23). We carried out a gastric ulcer model induced by indomethacin in male albino rats in vivo and the extract of PGE was investigated at a dose of 300 mg/kg in comparison to cimetidine (100 mg/kg). Furthermore, the assessment of gastric mucosal lesions and histopathology investigation of gastric tissue was done. It has been proved that Psidium guajava seeds significantly decreased the ulcer index and protected the mucosa from lesions. The antiulcer effect of Psidium guajava seed extract, which has the power of reducing the ensuing inflammatory reactions, can counteract the inflammation induced by indomethacin by the downregulation of relative genes expression (IL-1ß, IL-6, and TNF-α). Moreover, PGE significantly downregulated the increased COX-2, TGF-ß, and IGF-1 relative genes expression, confirming its beneficial effect in ulcer healing. Moreover, the possible PGE antioxidant potential was determined by in vitro assays using hydrogen peroxide and superoxide radical scavenging and revealed high antioxidant potential. Additionally, on the putatively annotated metabolites, an in silico study was conducted, which emphasized the extract's antiulcer properties might be attributed to several sterols such as stigmasterol and campesterol. The present study provided evidence of Psidium guajava seeds considered as a potential natural gastroprotective agent.

7.
ACS Omega ; 7(21): 17713-17722, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35664578

ABSTRACT

Euphorbia plants have been identified as potential sources of antitumor lead compounds. The current study aimed to isolate and identify the main active constituents of Euphorbia abyssinica latex followed by a cytotoxic evaluation. A network pharmacology approach was employed to predict the underlying mechanism. Finally, drug-likeness and ADMET studies were conducted for active compounds. The phytochemical investigation of the latex of E. abyssinica resulted in the isolation of two triterpenes, 3-acetyloxy-(3α)-urs-12-en-28-oic methyl ester (1) and lup-20(29)-en-3α,23-diol (2). The dichloromethane extract displayed potent cytotoxic activity against the MCF7 cell line with an IC50 value of 4.27 ± 0.12 µg/mL but weak activity against HepG2 and HeLa cell lines (IC50 = 20.47 ± 1.17 and 26.73 ± 2.99 µg/mL, respectively) compared to doxorubicin. Compound 1 showed an encouraging cytotoxic effect against MCF7 with IC50 = 4.20 ± 0.20 µg/mL, followed by compound 2 (IC50 = 5.8 ± 0.35 µg/mL). The network analysis revealed that the two isolated compounds are linked to 68 targets of human nature, among which 51 genes are linked to breast carcinomas and 5 targets (AR, CYP19A1, EGFR, PGR, and PTGS2) might be the top therapeutic targets of isolated compounds on breast cancer. Furthermore, the gene-enrichment analysis revealed that E. abyssinica could play a role in the treatment of breast cancer by striking 51 potential targets via mainly three signaling pathways: P13K-AKT, Wnt, and VEGF. Therefore, isolated triterpenes could be considered effective antitumor agents for breast cancer by elucidating their candidate target to alleviate breast cancer and related signaling pathways of the targets.

8.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35631375

ABSTRACT

Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1ß (IL-1ß) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.

9.
Artif Cells Nanomed Biotechnol ; 50(1): 96-106, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35361019

ABSTRACT

The increasing emergence of bacterial resistance is a challenge for the research community, thus novel antibacterial agents should be developed. Metal nanoparticles are promising antibacterial agents and could solve the problem of antibiotic resistance. Herein, we used Gardenia thailandica methanol extract (GTME) to biogenically synthesise zinc oxide nanoparticles (ZnO-NPs). The characterisation of ZnO-NPs was performed by UV spectroscopy, FTIR, scanning and transmission electron microscopes, dynamic light scattering, and X-ray diffraction. The antibacterial activity of ZnO-NPs was studied both in vitro and in vivo against Pseudomonas aeruginosa clinical isolates. Its minimum inhibitory concentration values ranged from 2 to 64 µg/mL, and it significantly decreased the membrane integrity and resulted in a significant increase in the inner and outer membrane permeability. Also, the ZnO-NPs treated cells possessed a distorted and deformed shape when examined by scanning electron microscope. The in vivo study (biochemical parameters and histological investigation) was conducted and it revealed a protective effect of ZnO-NPs against the deleterious influences of P. aeruginosa bacteria on lung, liver, and kidney tissues. LC-ESI-MS/MS revealed a phytochemical tentative identification of 57 compounds for the first time. We propose that GTME is a useful source for ZnO-NPs which has a promising antibacterial activity.


Subject(s)
Gardenia , Metal Nanoparticles , Zinc Oxide , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Leaves/chemistry , Pseudomonas aeruginosa , Tandem Mass Spectrometry , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
10.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35215306

ABSTRACT

Staphylococcus aureus can cause a wide range of severe infections owing to its multiple virulence factors in addition to its resistance to multiple antimicrobials; therefore, novel antimicrobials are needed. Herein, we used Gardenia thailandica leaf extract (GTLE), for the first time for the biogenic synthesis of silver nanoparticles (AgNPs). The active constituents of GTLE were identified by HPLC, including chlorogenic acid (1441.03 µg/g) from phenolic acids, and quercetin-3-rutinoside (2477.37 µg/g) and apigenin-7-glucoside (605.60 µg/g) from flavonoids. In addition, the antioxidant activity of GTLE was evaluated. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy (SEM), zeta potential, dynamic light scattering, and X-ray diffraction. The formed AgNPs had a spherical shape with a particle size range of 11.02-17.92 nm. The antimicrobial activity of AgNPs was investigated in vitro and in vivo against S. aureus clinical isolates. The minimum inhibitory concentration (MIC) of AgNPs ranged from 4 to 64 µg/mL. AgNPs significantly decreased the membrane integrity of 45.8% of the isolates and reduced the membrane potential by flow cytometry. AgNPs resulted in morphological changes observed by SEM. Furthermore, qRT-PCR was utilized to examine the effect of AgNPs on the gene expression of the efflux pump genes norA, norB, and norC. The in vivo examination was performed on wounds infected with S. aureus bacteria in rats. AgNPs resulted in epidermis regeneration and reduction in the infiltration of inflammatory cells. Thus, GTLE could be a vital source for the production of AgNPs, which exhibited promising in vivo and in vitro antibacterial activity against S. aureus bacteria.

11.
Nat Prod Res ; 36(10): 2625-2629, 2022 May.
Article in English | MEDLINE | ID: mdl-33957828

ABSTRACT

Jasminum multiflorum Burm. f. (J. multiflorum) is an ornamental plant with traditional medicinal importance. This study aims to evaluate the activity of J. multiflorum isolated compounds against hepatocellular carcinoma cells infected with hepatitis C virus (HCV) in vitro. The in vitro anti-viral and anti-oncogenic-related activity were validated by anchorage-independent assay plus transwell migration/invasion and spreading assay. In addition to chromatographic isolation of the active metabolites. The flower extract demonstrated a significant antiviral potential through reducing active viral replication by more than 90%. Study results credit this to specific reduction of viral NS5A and cellular EphA2 protein levels. Molecular docking analysis proved the role of the isolated compounds especially multifloroside, jasfloroside A and jasfloroside B as possible anti HCV molecules.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Jasminum , Liver Neoplasms , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Flowers/chemistry , Hepacivirus , Humans , Jasminum/chemistry , Liver Neoplasms/drug therapy , Molecular Docking Simulation
12.
J Inflamm Res ; 14: 7411-7430, 2021.
Article in English | MEDLINE | ID: mdl-35002276

ABSTRACT

INTRODUCTION: The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS: Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION: LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION: BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.

13.
Nat Prod Res ; 35(23): 5518-5520, 2021 Dec.
Article in English | MEDLINE | ID: mdl-32666825

ABSTRACT

In this study chemical profiling of Jasminum azoricum L. (J. azoricum) using HPLC-PDA/MS/MS and evaluation of its in-vitro cytotoxicity towards the human breast cancer cell line (MCF-7), human colorectal cancer cell (HCT-116) and human hepatocellular carcinoma (Huh-7) cell lines. The viability % was determined by the neutral red uptake assay. The study led to the identification of 37 secondary metabolite; major nine compounds were subjected to virtual docking to determine their role in tumour growth inhibition by controlling apoptosis and cancer cell proliferation using the 3D crystal structure of MST3 ligand protein. Two compounds; sambacoside A and molihauside C, showed high-affinity values of (-9.91, -9.57) kcal/mol against MST3 protein. In silico prediction of absorption, distribution, metabolism, excretion and toxicity (ADMET) was performed and revealed no mutagenicity, no tumorigenicity and non-irritant actions of both compounds, so J. azoricum could be used as a beneficial source for cytotoxic compounds.[Figure: see text].


Subject(s)
Jasminum , Chromatography, High Pressure Liquid , Humans , Molecular Docking Simulation , Plant Leaves , Tandem Mass Spectrometry
14.
Int J Nanomedicine ; 15: 9771-9781, 2020.
Article in English | MEDLINE | ID: mdl-33304101

ABSTRACT

INTRODUCTION: Jasminum officinale L. is a very important medicinal and industrial flowering aromatic plant. METHODS: The present study deals with Jasminum officinale L. leaves extract (JOLE) as a reducing and capping agent for the synthesis of silver nanoparticles (AgNPs) by the green pathway. Phenolic profile of the extract was evaluated using HPLC-PDA/MS/MS technique. Jasminum officinale L. leaves extract silver nanoparticles (JOLE-AgNPs) were characterized by ultraviolet light (UV), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta potential and X-ray diffraction (XRD). JOLE-AgNPs were examined for their cytotoxic activities by neutral red uptake assay (NRU) against bladder (5637) and breast cancer (MCF-7) cell lines. RESULTS: HPLC-PDA/MS/MS tentatively identified 51 compounds of different chemical classes. UV spectra showed absorption peak at λmax = 363 nm. The biosynthesized AgNPs were predominantly spherical in shape with an average size of 9.22 nm by TEM. The face cubic center (fcc) nature of silver nanoparticles was proved by XRD diffractogram. JOLE-AgNPs exhibited high cytotoxic activity against 5637 and MCF-7 cell lines compared to the cytotoxic activities of JOLE with IC50 of 13.09 µg/mL and 9.3 µg/mL, respectively. DISCUSSION: The silver nanoparticles formed by Jasminum officinale L. showed high cytotoxic activities against MCF-7 and 5637 cell lines and can be introduced as a new alternative cytotoxic medication.


Subject(s)
Breast Neoplasms/pathology , Jasminum/chemistry , Metal Nanoparticles/chemistry , Plant Leaves/chemistry , Silver/chemistry , Silver/pharmacology , Urinary Bladder/pathology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Green Chemistry Technology , Humans , MCF-7 Cells , Plant Extracts/chemistry
15.
Pak J Pharm Sci ; 28(6): 2061-74, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26639479

ABSTRACT

Medicago sativa L. (Alfalfa) is traditionally used to treat diabetes. This study was designed to investigate the potential antihyperlipidemic and antihyperglycemic activity of M. sativa sprouts in streptozotocin (STZ) induced diabetes via i.p. injection of 55 mg/kg of STZ. Experimental animals were divided into the following groups: GP1 (normal), GP2 (STZ-hyperlipidemic), GP3 (rouvastatin), GP4 (metformin), GP 5-9 (diabetic treated with methanolic, petroleum ether, chloroform, ethyl acetate and butanol extracts). The administration of the total methanolic extract (500 mg/kg), the petroleum ether (32.5mg) and butanol fractions (60 mg) for 4 weeks significantly decreased (p<0.05) triglycerides (TG), total cholesterol (TC), low-density lipoproteins (LDL) and very low density lipoproteins (VLDL) in comparison to rouvastatin. Petroleum ether fraction proved to exhibit the best activity as antihyperlipidemic agent (12.23%). On the other hand, ethyl acetate fraction retained the best activity (vs. metformin) as antihyperglycemic agent. Histopathological evidences on liver, pancreas and spleen were in agreement with the above mentioned results. Purification, characterization, and identification of isolated compounds from the active fractions afforded 9 compounds: ß-sitosterol and stigmasterol from the petroleum ether fraction; 10-hydroxy-coumestrol, apigenin, genistein, p-hydroxy-benzoic-acid, 7, 4'- dihydroxyflavone, quercetin-3-glucoside and sissotrin from the ethyl acetate fraction.


Subject(s)
Blood Glucose/drug effects , Diabetes Mellitus, Experimental/drug therapy , Hyperlipidemias/drug therapy , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Lipids/blood , Medicago sativa , Plant Extracts/pharmacology , Animals , Biomarkers/blood , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/diagnosis , Hyperlipidemias/blood , Hyperlipidemias/diagnosis , Hypoglycemic Agents/isolation & purification , Hypolipidemic Agents/isolation & purification , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Medicago sativa/chemistry , Methanol/chemistry , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Phytotherapy , Plant Extracts/isolation & purification , Plant Shoots , Plants, Medicinal , Rats, Wistar , Solvents/chemistry , Spleen/drug effects , Spleen/metabolism , Spleen/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...