Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Environ Manage ; 364: 121449, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889647

ABSTRACT

Water and carbon, essential for Earth's well-being, face imminent threats from human activities that fuel climate change. This study investigates nature-based solutions, focusing on the carbon-water nexus of ex-mining lake-converted constructed wetlands, specifically in Malaysia's Paya Indah Wetlands (PIW). Addressing research gaps, it assesses the ecosystem services of these wetlands, emphasising integrated evaluations for informed land management and employing a top-down conservation approach. Methodologically, spatial assessments, soil and water sampling, carbon quantification, water quality index calculations, land cover classification and stakeholder surveys were conducted. Results underscore the significant carbon sequestration and water quality improvement potential of constructed wetlands, with soil and sediment carbon accumulation reaching 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), translating to an annual sequestration capacity of 67.5 Mg C ha-1 year-1. Water quality index values ranged from 58 to 81 (Classes II to III). PIW's establishment led to a reduction of over 90% in barren land, with increases in water bodies (36%) and vegetation-covered land (38%), boosting wildlife populations by 30%. Spatial variations in organic carbon density and water quality underscore the complexity of the carbon-water nexus and its impacts on ecosystem health and water security. Despite land use changes, PIW demonstrates resilience, contributing to climate change mitigation. Stakeholder perceptions vary, emphasising the need for adaptive strategies. The study proposes transdisciplinary conservation initiatives and adaptive plans, stressing the pivotal role of ex-mining lake-converted constructed wetlands in enhancing climate resilience.


Subject(s)
Carbon , Lakes , Mining , Wetlands , Malaysia , Carbon/analysis , Climate Change , Ecosystem , Carbon Sequestration , Conservation of Natural Resources , Soil/chemistry , Water Quality
2.
Environ Sci Pollut Res Int ; 31(11): 16291-16308, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315340

ABSTRACT

Ex-mining lake-converted constructed wetlands play a significant role in the carbon cycle, offering a great potential to sequester carbon and mitigate climate change and global warming. Investigating the quantity of carbon storage capacity of ex-mining lake-converted constructed wetlands provides information and justification for restoration and conservation efforts. The present study aims to quantify the carbon pool of the ex-mining lake-converted constructed wetlands and characterise the physicochemical properties of the soil and sediment. Pearson's correlation and a one-way ANOVA were performed to compare the different sampling stations at Paya Indah Wetland, Selangor, Malaysia. An analysis of 23 years of ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia, revealed that the estimated total carbon pool in soil and sediment accumulated to 1553.11 Mg C ha-1 (equivalent to 5700 Mg CO2 ha-1), which translates to an annual carbon sink capacity of around 67.5 Mg C ha-1 year-1. The characterisation showed that the texture of all soil samples was dominated by silt, whereas sediments exhibited texture heterogeneity. Although the pH of the soil and sediment was both acidic, the bulk density was still optimal for plant growth and did not affect root growth. FT-IR and WDXRF results supported that besides the accumulation and degradation of organic substances, which increase the soil and sediment carbon content, mineral carbonation is a mechanism by which soil and sediment can store carbon. Therefore, this study indicates that the ex-mining lake-converted constructed wetlands of Paya Indah Wetlands, Selangor, Malaysia have a significant carbon storage potential.


Subject(s)
Lakes , Wetlands , Lakes/chemistry , Carbon/analysis , Malaysia , Spectroscopy, Fourier Transform Infrared , Soil/chemistry
3.
Article in English | MEDLINE | ID: mdl-37103711

ABSTRACT

Fish biodiversity in Malaysia is under pressure due to overexploitation, pollution, and climatic stressors. Nevertheless, the information on fish biodiversity and species vulnerability status is not well documented in the region. Therefore, a study on fish species composition and abundance in the Malacca Strait of Malaysia has been conducted for the purpose of monitoring biodiversity, determining the risk of species extinction, and identifying factors influencing biodiversity distribution. The sampling was conducted based on a random stratified sampling method from the three zones of sampling locations, i.e., estuary, mangrove, and open sea area of Tanjung Karang and Port Klang of Malacca Strait. Higher species diversity was recorded at Tanjung Karang coastal and mangrove areas (H' = 2.71; H' = 1.64) than Port Klang coastal and mangrove areas (H' = 1.50, H' = 0.29), an indication that the Port Klang area is comparatively more vulnerable. The study also explored sampling location, habitat, and IUCN red list as the influencing factors for fish biodiversity. Applying IUCN red list, this study identified one Endangered and one Vulnerable species with the forecasted increasing landing for both species. Our findings suggest the urgent need for the implementation of conservation measures as well as the continuous monitoring of fish biodiversity in the area.

4.
Environ Geochem Health ; 45(5): 1201-1230, 2023 May.
Article in English | MEDLINE | ID: mdl-35763170

ABSTRACT

As the climate change impacts are expected to become increasingly disruptive, affecting water security, environmental health and ecosystem, constructed wetlands receive attention for their functions in delivering various life-sustaining services to human and environmental systems. In this article, a systematic review was conducted through the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standard to identify the current research on constructed wetlands' nature values and services from 2011 to 2020 of two databases, namely Scopus and Web of Science. The criteria of assessment focus on holistic deliberation of subject matters, namely carbon sequestration and water security as regulating and provisioning services, as well as nature values of constructed wetlands, namely instrumental and intrinsic values. As a result, 38 articles were selected and comprehensively examined. As the lack of an interdisciplinary approach makes data and information integration difficult, this study derived an integrated classification of constructed wetlands' services and mapped with its nature values, guided by the Millennium Ecosystem Assessment framework. Besides, mechanisms and factors affecting carbon sequestration and water security were also discussed. The carbon-water nexus was then conceptualised as interlinkages between engineered and natural physicochemical processes at the interface between carbon and water cycles. To fill the gaps, based on the carbon-water nexus concept, a new framework was synthesised at the end of the deliberation for constructed wetlands in regulating local climate through carbon sequestration and ensuring water security through water treatment and purification as well as influencing socio-cultural values, which needs an integrated approach that is the novelty of this work. The framework integrates the dichotomy of the instrumental-intrinsic nature values of constructed wetlands to evaluate the importance and benefit of the carbon-water nexus. The framework that reveals the vitality of nature values provided by constructed wetlands can help improve the decision-making to prioritise ecosystem services and conservation efforts, particularly in the sustainable management of constructed wetlands.


Subject(s)
Ecosystem , Wetlands , Humans , Carbon , Carbon Sequestration , Water Supply , Conservation of Natural Resources
5.
Data Brief ; 45: 108709, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36426022

ABSTRACT

The data was collected using a mixed method study of convergent parallel design, conducted using classroom observations, interviews and questionnaires to triangulate the data obtained from the three Premier Polytechnics in Malaysia, which involved nine lecturers and 183 students. The data is useful in focussing on the structure that normally occurs whenever code-switching happens and to test on how effective it is in the learning of English. Further research could also be based on these data as to identify the potential functions of code-switching and its contribution towards the language policy in Malaysia as reference to other countries too. It will provide an understanding of patterns and reasons for code-switching and subsequently offer insights into the use of code-switching as an effective language teaching and learning strategy.

6.
Environ Sci Pollut Res Int ; 29(58): 87923-87937, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35819668

ABSTRACT

Several studies have highlighted the significant impact of climate change on agriculture. However, there have been little empirical enquiries into the impact of climate change on marine fish production, particularly in Bangladesh. Hence, this study aims to investigate the impact of climate change on marine fish production in Bangladesh using data from 1961 to 2019. Data were obtained from the Food and Agriculture Organization, Bangladesh Meteorological Department, the World Development Indicators, and the National Oceanic and Atmospheric Administration. The autoregressive distributed lag (ARDL) model was used to describe the dynamic link between CO2 emissions, average temperature, Sea Surface Temperature (SST), rainfall, sunshine, wind and marine fish production. The ARDL approach to cointegration revealed that SST (ß = 0.258), rainfall (ß =0.297), and sunshine (ß =0.663) significantly influence marine fish production at 1% and 10% levels in the short run and at 1% level in the long run. The results also found that average temperature has a significant negative impact on fish production in both short and long runs. On the other hand, CO2 emissions have a negative impact on marine fish production in the short run. Specifically, for every 1% rise in CO2 emissions, marine fish production will decline by 0.11%. The findings of this study suggest that policymakers formulate better policy frameworks for climate change adaptation and sustainable management of marine fisheries at the national level. Research and development in Bangladesh's fisheries sector should also focus on marine fish species that can resist high sea surface temperatures, CO2 emissions, and average temperatures.


Subject(s)
Carbon Dioxide , Economic Development , Animals , Carbon Dioxide/analysis , Bangladesh , Climate Change , Agriculture/methods
7.
Environ Sci Pollut Res Int ; 29(16): 24167-24179, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34822084

ABSTRACT

Consumption advice to ensure the health and safety of fish consumers remains urgent to handle the ever-increasing panic over heavy metal toxicity. Moreover, studies of fish consumption rarely focus on the perceptions and awareness of consumers. Considering this, the present study examines the factors determining the willingness to follow fish consumption advice as well as calculate the risk-benefit ratio and produce the vulnerability map followed by formulating fish consumption advice for consumers of two commercially important fish species, tilapia (Oreochromis niloticus) and mudfish (Ophiocephalus striatus), in the Laguna de Bay area of the Philippines. Primary data on consumers' perceptions were collected through a questionnaire, whereas heavy metal contamination data were compiled from the best available literature. We concluded that people's willingness to adopt consumption advice is mostly dependent on their existing level of fish consumption (P = 0.000). There was no discernible difference in the mean concentration of heavy metals in fish between the dry and wet seasons, with the exception of As concentrations in the samples (t15.75 = 3.72, p < 0.001). The hazard quotient (risk-benefit ratio) for fish consumption (HQefa) was an order of magnitude higher in the mudfish samples (0.05 and 28.28) compared to tilapia (0.04 to 16.02). Binangonan and Taguig from the Northern West Bay (1A, 1B) were clearly recognised on the vulnerability map as the most vulnerable regions in the lake. In general, it was determined that As and Pb were the elements causing consumption restrictions on tilapia collected from various parts of Laguna Lake. As with tilapia, locations with a high-risk advisory for mudfish were identified as the Northern West Bay and Central Bay, with a consumption limit of five meals per month due to excessive mercury pollution. This empirical study can serve as an option for the future development of fish consumption advice in the region.


Subject(s)
Metals, Heavy , Tilapia , Water Pollutants, Chemical , Animals , Environmental Monitoring , Fishes , Food Contamination/analysis , Humans , Lakes , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
8.
Article in English | MEDLINE | ID: mdl-34360286

ABSTRACT

Chemical pollution in the transboundary Langat River in Malaysia is common both from point and non-point sources. Therefore, the water treatment plants (WTPS) at the Langat River Basin have experienced frequent shutdown incidents. However, the Langat River is one of the main sources of drinking water to almost one-third of the population in Selangor state. Meanwhile, several studies have reported a high concentration of Arsenic (As) in the Langat River that is toxic if ingested via drinking water. However, this is a pioneer study that predicts the As concentration in the Langat River based on time-series data from 2005-2014 to estimate the health risk associated with As ingestion via drinking water at the Langat River Basin. Several time-series prediction models were tested and Gradient Boosted Tree (GBT) gained the best result. This GBT model also fits better to predict the As concentration until December 2024. The mean concentration of As in the Langat River for both 2014 and 2024, as well as the carcinogenic and non-carcinogenic health risks of As ingestion via drinking water, were within the drinking water quality standards proposed by the World Health Organization and Ministry of Health Malaysia. However, the ingestion of trace amounts of As over a long period might be detrimental to human health because of its non-biodegradable characteristics. Therefore, it is important to manage the drinking water sources to minimise As exposure risks to human health.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/analysis , Environmental Monitoring , Humans , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis
9.
Article in English | MEDLINE | ID: mdl-34206384

ABSTRACT

In 2020, the COVID-19 pandemic severely impacted the global public health system and led to many deaths worldwide. COVID-19 is highly contagious and can be spread by symptomatic or asymptomatic individuals. As such, determining the risk of infection within a community is difficult. To mitigate the risk of the spread of COVID-19, the government of Malaysia implemented seven phases of the movement control order (MCO) from 18 March to 31 December 2020. However, the socioeconomic cost was substantial despite the effectiveness of the MCO in bringing down cases of infection. As noted by the Prime Minister of Malaysia, the final criterion that should be met is community empowerment. In other words, community-based mitigation measures through which communities unite to contain the pandemic are essential before the completion of the vaccination program. As a measure for controlling the pandemic, mitigation strategies in the new normal should be feasible, practical, and acceptable to communities. In this paper, we present a deliberation of a set of community-based monitoring criteria to ensure health and well-being in communities, such as efficacy, technicality, feedback, and sustainability. The proposed criteria will be instrumental in developing community-based monitoring initiatives to achieve the desired goals in coping with the pandemic as well as in empowering communities to be part of the governance process.


Subject(s)
COVID-19 , Pandemics , Humans , Malaysia/epidemiology , Needs Assessment , Pandemics/prevention & control , SARS-CoV-2
10.
J Environ Manage ; 289: 112491, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33813302

ABSTRACT

Community-based monitoring is increasingly recognised as one solution to sustainable environmental management. However, the development of community-based monitoring has led to confusion or misconceptions regarding other similar initiatives. Through a review of the characteristics and synthesising criteria of effective community-based monitoring, this article addresses how to distinguish community-based monitoring from other forms of community engagement research. A review of relevant community-based monitoring literature identifies the characteristics of and knowledge gaps in procedures and governance structures. Additionally, evidence of common benefits, challenges and lessons learned for successful community-based monitoring are deliberated. As an outcome of the review, the article synthesises a set of community-based monitoring criteria as follows: (1) efficacy of initiatives, (2) technicality aspects, (3) feedback mechanisms and (4) sustainability. These synthesised criteria will be instrumental in designing customised community-based monitoring initiatives for environmental sustainability.


Subject(s)
Environmental Monitoring , Knowledge
11.
Water Sci Technol ; 83(5): 1039-1054, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33724935

ABSTRACT

The main focus of this study is exploring the spatial distribution of polyaromatics hydrocarbon links between oil spills in the environment via Support Vector Machines based on Kernel-Radial Basis Function (RBF) approach for high precision classification of oil spill type from its sample fingerprinting in Peninsular Malaysia. The results show the highest concentrations of Σ Alkylated PAHs and Σ EPA PAHs in ΣTAH concentration in diesel from the oil samples PP3_liquid and GP6_Jetty achieving 100% classification output, corresponding to coherent decision boundary and projective subspace estimation. The high dimensional nature of this approach has led to the existence of a perfect separability of the oil type classification from four clustered oil type components; i.e diesel, bunker C, Mixture Oil (MO), lube oil and Waste Oil (WO) with the slack variables of ξ ≠ 0. Of the four clusters, only the SVs of two are correctly predicted, namely diesel and MO. The kernel-RBF approach provides efficient and reliable oil sample classification, enabling the oil classification to be optimally performed within a relatively short period of execution and a faster dataset classification where the slack variables ξ are non-zero.


Subject(s)
Petroleum Pollution , Polycyclic Aromatic Hydrocarbons , Hydrocarbons , Malaysia , Support Vector Machine
12.
Environ Geochem Health ; 43(5): 2049-2063, 2021 May.
Article in English | MEDLINE | ID: mdl-33389458

ABSTRACT

Rivers, the main source of the domestic water supply in Malaysia, have been threatened by frequent flooding in recent years. This study aims to assess human health risks associated with exposure to concentrated heavy metals in a flood-prone region of Malaysia and investigate the affected individuals' willingness to participate in managing water resources. Hazard indices and cancer risks associated with water contamination by heavy metals have been assessed following the method prescribed by the US Environmental Protection Agency. Yearly data of heavy metal contamination (Cd, Cr, Pb, Zn, Fe), water quality parameters (DO, BOD, COD, pH), and climatic information (annual rainfall, annual temperature) have been collected from the Department of Environment and Meteorological Department of Malaysia, respectively. The inductively coupled plasma mass spectrometry technique has been used by the department of environment for analyzing heavy metal concentration in river water samples. In this study, data from a stratified random sample of households in the affected region were analyzed, using partial least squares structural equation modeling, to predict the link between individuals' perceptions and attitudes about water resources and their willingness to engage in water management program. The health risk estimation indicated that the hazard index values were below the acceptable limit, representing no non-carcinogenic risk to adults and children residing in the study area via oral intake and dermal adsorption of water. However, the calculated value for cancer risk signified possible carcinogenic risks associated with Pb and Cd. In general, contamination due to pollution and flooding tends to increase in the basin region, and appropriate management is needed. The results identified perceived water quality as a significant factor influencing people's attitudes toward involvement in water management programs. As in many developing countries, there is no legal provision guaranteeing public representation in water management in Malaysia. The conclusion discusses the importance of these for the literature and for informing future policy actions.


Subject(s)
Drinking Water , Public Opinion , Rivers/chemistry , Water Quality , Adult , Attitude to Health , Child , Dietary Exposure/adverse effects , Dietary Exposure/analysis , Drinking Water/analysis , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Floods , Humans , Malaysia , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis , Water Supply
13.
Environ Geochem Health ; 43(2): 897-914, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32372251

ABSTRACT

The prolonged persistence of toxic arsenic (As) in environment is due to its non-biodegradable characteristic. Meanwhile, several studies have reported higher concentrations of As in Langat River. However, it is the first study in Langat River Basin, Malaysia, that As concentrations in drinking water supply chain were determined simultaneously to predict the health risks of As ingestion. Water samples collected in 2015 from the four stages of drinking water supply chain were analysed for As concentration by inductively coupled plasma mass spectrometry. Determined As concentrations along with the time series data (2004-2015) were significantly within the maximum limit 0.01 mg/L of drinking water quality standard set by World Health Organization. The predicted As concentration by auto-regression moving average was 3.45E-03 mg/L in 2020 at 95% level based on time series data including climatic control variables. Long-term As ingestion via household filtration water at Langat Basin showed no potential lifetime cancer risk (LCR) 9.7E-06 (t = 6.68; p = 3.37E-08) as well as non-carcinogenic hazard quotient (HQ) 4.8E-02 (t = 6.68; p = 3.37E-08) risk at 95% level. However, the changing landscape, ex-mining ponds and extensive use of pesticides for palm oil plantation at Langat Basin are considered as the major sources of increased As concentration in Langat River. Therefore, a two-layer water filtration system at Langat Basin should be introduced to accelerate the achievement of sustainable development goal of getting safe drinking water supply.


Subject(s)
Arsenic/analysis , Carcinogens, Environmental/analysis , Dietary Exposure/analysis , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Dietary Exposure/standards , Drinking Water/standards , Humans , Malaysia , Mining , Pesticides/adverse effects , Risk Assessment , Rivers/chemistry
14.
Saf Health Work ; 11(2): 152-158, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596009

ABSTRACT

BACKGROUND: The Globally Harmonized System of Classification and Labeling of Chemicals (GHS) was developed to enhance chemical classification and hazard communication systems worldwide. However, some of the elements such as building blocks and data sources have the potential to cause "disharmony" to the GHS, particularly in its classification results. It is known that some countries have developed their own lists of classified chemicals in accordance with the GHS to "standardize" the classification results within their respective countries. However, the lists of classified chemicals may not be consistent among these countries. METHOD: In this study, the lists of classified chemicals developed by the European Union, Japan, Malaysia, and New Zealand were selected for comparison of classification results for carcinogenicity, germ cell mutagenicity, and reproductive toxicity. RESULTS: The findings show that only 54%, 66%, and 37% of the classification results for each Carcinogen, Mutagen and Reproductive toxicants hazard classes, respectively are the same among the selected countries. This indicates a "moderate" level of consistency among the classified chemicals lists. CONCLUSION: By using classification results for the carcinogenicity, germ cell mutagenicity, and reproductive toxicity hazard classes, this study demonstrates the "disharmony" in the classification results among the selected countries. We believe that the findings of this study deserve the attention of the relevant international bodies.

15.
Article in English | MEDLINE | ID: mdl-32344678

ABSTRACT

Although toxic Cd (cadmium) and Cr (chromium) in the aquatic environment are mainly from natural sources, human activities have increased their concentrations. Several studies have reported higher concentrations of Cd and Cr in the aquatic environment of Malaysia; however, the association between metal ingestion via drinking water and human health risk has not been established. This study collected water samples from four stages of the drinking water supply chain at Langat River Basin, Malaysia in 2015 to analyze the samples by inductivity coupled plasma mass spectrometry. Mean concentrations of Cd and Cr and the time-series river data (2004-2014) of these metals were significantly within the safe limit of drinking water quality standard proposed by the Ministry of Health Malaysia and the World Health Organization. Hazard quotient (HQ) and lifetime cancer risk (LCR) values of Cd and Cr in 2015 and 2020 also indicate no significant human health risk of its ingestion via drinking water. Additionally, management of pollution sources in the Langat Basin from 2004 to 2015 decreased Cr concentration in 2020 on the basis of autoregression moving average. Although Cd and Cr concentrations were found to be within the safe limits at Langat Basin, high concentrations of these metals have been found in household tap water, especially due to the contamination in the water distribution pipeline. Therefore, a two-layer water filtration system should be introduced in the basin to achieve the United Nations Sustainable Development Goals (SDGs) 2030 agenda of a better and more sustainable future for all, especially via SDG 6 of supplying safe drinking water at the household level.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Cadmium/toxicity , Chromium/toxicity , Environmental Monitoring , Humans , Malaysia , Risk Assessment , Rivers , Water Pollutants, Chemical/toxicity
16.
Chemosphere ; 245: 125590, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31874324

ABSTRACT

This study was conducted to assess the reliability of Nerita lineata as a bioindicator for metals in sediment and the factors influencing the accumulation of metals and methylmercury in its soft tissue. The two matrices were analyzed for Co, Cr, Cu, THg, MeHg, Mn, Ni, Pb, and Zn. The metal concentrations in N. lineata were comparable to previously reported results with the exception of Ni which was higher. Cu, Mn, and Pb in N. lineata were significantly (p < 0.05) positively correlated with the respective elements in the sediment, while the biota-sediment accumulation factor showed that Cu, THg, MeHg, and Ni were bioconcentrated in N. lineata. This suggests that N. lineata has the potential to be a bioindicator for Cu, THg, MeHg, Mn, Ni, and Pb. The results also suggest an indirect relationship between THg in the sediment and the MeHg concentration in N. lineata in which periphyton might play a role. The affinity of Cr, Cu, Pb, and Zn with Mn (oxides) in sediment was also found to be a factor influencing their accumulation in N. lineata.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Methylmercury Compounds/analysis , Snails/metabolism , Animals , Environmental Monitoring/methods , Reproducibility of Results , Water Pollutants, Chemical/analysis
17.
Int J Health Care Qual Assur ; 32(1): 34-44, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30859864

ABSTRACT

PURPOSE: Mercury is widely used in medical and healthcare facilities as dental amalgam, mercury-added medical devices, thiomersal-containing vaccines, laboratory analysis and for other general applications despite the hazards. Various agencies consistently promote mercury-free medical facilities through mercury-free alternatives and better management practices, which are in line with the Minamata Convention on Mercury that aims to protect human health and environment from anthropogenic mercury release. The paper aims to discuss these issues. DESIGN/METHODOLOGY/APPROACH: The authors conducted a gap analysis on recommended practices gathered from the literature and current practices gathered through semi-structured interviews with Malaysian medical personnel. A life cycle approach was adopted covering mercury use: input, storage, handling, accident, waste disposal and governance phases. FINDINGS: The authors found that there are significant gaps between recommended and current mercury management practices. Analysis indicates improper mercury management as the main contributor to these gaps. The authors found from recommended practices that core components needing improvement include: mercury management action plan, mercury use identification team, purchasing policy, proper guidelines and monitoring systems. PRACTICAL IMPLICATIONS: This study helps us to understand mercury management practices and suggests essential steps to establish a mercury-free medical facility. ORIGINALITY/VALUE: This study explored the gaps between recommended and current mercury management practices in a medical facility and contributes to the Minamata Convention on Mercury aspirations.


Subject(s)
Accidents, Occupational/prevention & control , Health Facilities/standards , Medical Waste Disposal/standards , Mercury/adverse effects , Patient Safety , Safety Management/organization & administration , Developing Countries , Female , Health Policy , Hospitals, Teaching , Humans , Malaysia , Male , Needs Assessment , Policy Making
18.
Article in English | MEDLINE | ID: mdl-30241360

ABSTRACT

The presence of toxic polonium-210 (Po-210) in the environment is due to the decay of primordial uranium-238. Meanwhile, several studies have reported elevated Po-210 radioactivity in the rivers around the world due to both natural and anthropogenic factors. However, the primary source of Po-210 in Langat River, Malaysia might be the natural weathering of granite rock along with mining, agriculture and industrial activities. Hence, this is the first study to determine the Po-210 activity in the drinking water supply chain in the Langat River Basin to simultaneously predict the human health risks of Po-210 ingestion. Therefore, water samples were collected in 2015⁻2016 from the four stages of the water supply chain to analyze by Alpha Spectrometry. Determined Po-210 activity, along with the influence of environmental parameters such as time-series rainfall, flood incidents and water flow data (2005⁻2015), was well within the maximum limit for drinking water quality standard proposed by the Ministry of Health Malaysia and World Health Organization. Moreover, the annual effective dose of Po-210 ingestion via drinking water supply chain indicates an acceptable carcinogenic risk for the populations in the Langat Basin at 95% confidence level; however, the estimated annual effective dose at the basin is higher than in many countries. Although several studies assume the carcinogenic risk of Po-210 ingestion to humans for a long time even at low activity, however, there is no significant causal study which links Po-210 ingestion via drinking water and cancer risk of the human. Since the conventional coagulation method is unable to remove Po-210 entirely from the treated water, introducing a two-layer water filtration system at the basin can be useful to achieve SDG target 6.1 of achieving safe drinking water supplies well before 2030, which might also be significant for other countries.


Subject(s)
Drinking Water/analysis , Polonium/analysis , Polonium/toxicity , Risk Assessment/statistics & numerical data , Rivers/chemistry , Water Pollutants, Radioactive/analysis , Water Purification/methods , Environmental Monitoring/methods , Humans , Malaysia
19.
Mar Pollut Bull ; 120(1-2): 322-332, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28535957

ABSTRACT

This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited.


Subject(s)
Gas Chromatography-Mass Spectrometry , Petroleum Pollution/analysis , Fuel Oils , Malaysia , Total Quality Management
20.
Water Environ Res ; 89(12): 2088-2102, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28087920

ABSTRACT

The spatio-temporal variability of water quality associated with anthropogenic activities was studied for the Bertam River and its main tributaries within the Bertam Catchment, Cameron Highlands, Malaysia. A number of physico-chemical parameters of collected samples were analyzed to evaluate their spatio-temporal variability. Nonparametric statistical analysis showed significant temporal and spatial differences (p < 0.05) in most of the parameters across the catchment. Parameters except dissolved oxygen and chemical oxygen demand displayed higher values in rainy season. The higher concentration of total suspended solids was caused by massive soil erosion and sedimentation. Seasonal variations in contaminant concentrations are largely affected by precipitation and anthropogenic influences. Untreated domestic wastewater discharge as well as agricultural runoff significantly influenced the water quality. Poor agricultural practices and development activities at slope areas also affected the water quality within the catchment. The analytical results provided a basis for protection of river environments and ecological restoration in mountainous Bertam Catchment.


Subject(s)
Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality , Biological Oxygen Demand Analysis , Conservation of Water Resources , Environmental Monitoring , Malaysia
SELECTION OF CITATIONS
SEARCH DETAIL
...