Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 126: 113-118, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29421077

ABSTRACT

Revealing the potential of seagrass as a bioindicator for metal pollution is important for assessing marine ecosystem health. Trace metal (111Cd, 63Cu, 60Ni, 208Pb, 66Zn) concentrations in the various parts (root, rhizome, and blade) of tape seagrass (Enhalus acoroides) collected from Merambong shoal of Sungai Pulai estuary, Johor Strait, Malaysia were acid-extracted using a microwave digester and analysed via inductively coupled plasma-mass spectrometry (ICP-MS). The ranges of trace metal concentrations (in µgg-1 dry weight) were as follows: Cd (0.05-0.81), Cu (1.62-27.85), Ni (1.89-9.35), Pb (0.69-4.16), and Zn (3.44-35.98). The translocation factor revealed that E. acoroides is a hyperaccumulator plant, as its blades can accumulate high concentrations of Cd, Cu, Ni, and Zn, but not Pb. The plant limits Pb mobility to minimize Pb's toxic impact. Thus, E. acoroides is a potential bioindicator of metal pollution by Cd, Cu, Ni, and Zn in estuarine environments.


Subject(s)
Environmental Monitoring/methods , Hydrocharitaceae/chemistry , Metals, Heavy/analysis , Plant Leaves/chemistry , Rhizome/chemistry , Cadmium/analysis , Environmental Biomarkers , Environmental Pollution/analysis , Estuaries , Isotopes , Malaysia , Metals/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis
2.
Environ Geochem Health ; 39(6): 1259-1271, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28484873

ABSTRACT

The aim of the present study was to appraise the levels of heavy metal contamination (Zn and Pb) in sediment of the Langat River (Selangor, Malaysia). Samples were collected randomly from 15 sampling stations located along the Langat River. The parameters measured were pH, redox potential, salinity, electrical conductivity, loss of ignition, cation exchanges capacity (Na, Mg, Ca, K), and metal ions (Zn and Pb). The geo-accumulation index (I geo) and contamination factor (C f) were applied to determine and classify the magnitude of heavy metal pollution in this urban river sediment. Results revealed that the I geo of Pb indicated unpolluted to moderately polluted sediment at most of the sampling stations, whereas Zn was considered to be within background concentration. The I geo results were refined by the C f values, which showed Pb with very high C f at 12 stations. Zinc, on the other hand, had low to moderate C f values. These findings indicated that the sediment of the Langat River is severely polluted with Pb. The Zn concentration at most sampling points was well below most sediment quality guidelines. However, 40% of the sampling points were found to have a Pb concentration higher than the consensus-based probable effect concentration of 128 mg/kg (concentrations above this value are likely to cause harmful effects). This result not only highlights the severity of Pb pollution in the sediment of the Langat River, but also the potential risk it poses to the environment.


Subject(s)
Geologic Sediments/chemistry , Lead/analysis , Rivers/chemistry , Urbanization , Water Pollutants, Chemical/analysis , Zinc/analysis , Cations/chemistry , Electric Conductivity , Environmental Monitoring/methods , Hydrogen-Ion Concentration , Malaysia , Oxidation-Reduction , Salinity , Spectrophotometry, Atomic
SELECTION OF CITATIONS
SEARCH DETAIL
...