Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20488, 2023 11 22.
Article in English | MEDLINE | ID: mdl-37993516

ABSTRACT

The development of effective recombinant vaccines against parasitic nematodes has been challenging and so far mostly unsuccessful. This has also been the case for Ostertagia ostertagi, an economically important abomasal nematode in cattle, applying recombinant versions of the protective native activation-associated secreted proteins (ASP). To gain insight in key elements required to trigger a protective immune response, the protein structure and N-glycosylation of the native ASP and a non-protective Pichia pastoris recombinant ASP were compared. Both antigens had a highly comparable protein structure, but different N-glycan composition. After mimicking the native ASP N-glycosylation via the expression in Nicotiana benthamiana plants, immunisation of calves with these plant-produced recombinants resulted in a significant reduction of 39% in parasite egg output, comparable to the protective efficacy of the native antigen. This study provides a valuable workflow for the development of recombinant vaccines against other parasitic nematodes.


Subject(s)
Cattle Diseases , Ostertagiasis , Cattle , Animals , Ostertagia/genetics , Ostertagiasis/prevention & control , Ostertagiasis/veterinary , Vaccination/veterinary , Vaccines, Synthetic/genetics , Recombinant Proteins/genetics , Parasite Egg Count
2.
Fundam Clin Pharmacol ; 37(2): 287-295, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36205489

ABSTRACT

Diabetes induces a disorder in mitochondrial activity, which causes damage to the nuclear and mitochondrial DNA and ultimately increases the release of inflammatory cytokines and damages the sciatic nerve and dorsal root ganglion and induces neuropathy. It has been shown that progesterone has anti-inflammatory and antioxidative effects and prevents nerve cell damage. Therefore, the aim of this experiment was to investigate the effect of progesterone receptor neuroprotection on diabetic neuropathy. Forty male Sprague-Dawley rats were divided into four groups, including control group, diabetic control group, diabetic control group + progesterone (30 mg/kg), and diabetic control group + combination of progesterone (30 mg/kg) and RU486 (10 mg/kg). After the induction of diabetes, blood glucose level, body weight, behavioral tests, electrophysiological tests, oxidative and inflammatory factors, and histological parameters were measured. Progesterone treatment significantly reduced the level of sensitivity to hot plate without significant effect on glucose level, and significant changes were also observed in the results of tail flick test. In addition, the results showed that the administration of progesterone can improve MNCV and significantly reduce the serum levels of oxidative stress and inflammatory factors, as well as inflammation and edema around the sciatic nerve. However, RU486 inverted the beneficial effects of progesterone. Progesterone can be considered as a protective agent in reducing DN because of its ability to reduce inflammation and nerve damage. In addition, RU486, a progesterone receptor blocker, inhibits the beneficial effects of progesterone on the DN; thus, progesterone receptors play an important role in the neuroprotective effect of progesterone.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Rats , Animals , Male , Diabetic Neuropathies/drug therapy , Antioxidants/pharmacology , Rats, Sprague-Dawley , Progesterone/pharmacology , Receptors, Progesterone , Mifepristone/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Oxidative Stress , Inflammation/pathology , Sciatic Nerve
SELECTION OF CITATIONS
SEARCH DETAIL
...