Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Res J (Isfahan) ; 21: 19, 2024.
Article in English | MEDLINE | ID: mdl-38476715

ABSTRACT

Background: This study assessed the effect of different concentrations of 4-methacryloyloxyethy trimellitate anhydride (4-META) added to silane on microtensile bond strength (µTBS) of light-cure and dual-cure resin cement to hybrid and zirconia-reinforced lithium silicate ceramics. Materials and Methods: This in vitro, experimental study was conducted on 32 Celtra Duo and 32 VITA Enamic ceramics bonded to Allcem Veneer light-cure and Allcem dual-cure resin cements using silane impregnated with 4-META in 0%, 2.5%, 5%, and 10 wt% concentrations in 16 groups (n = 4). The µTBS of specimens was measured by a universal testing machine and analyzed by the Kruskal-Wallis and Mann-Whitney tests, and the mode of failure was determined under a stereomicroscope and analyzed by the Chi-square test (alpha = 0.05). Results: The lowest mean µTBS was recorded in the Enamic ceramic group with 4-META (0%) bonded to dual-cure cement (14.26 MPa), and the highest mean µTBS was recorded in Enamic ceramic with 4-META (10%) bonded to light-cure cement (18.59 MPa) (P < 0.001). The µTBS of Celtra Duo was significantly higher than that of Enamic in bonding to light-cure cement using 4-META (2.5%) (P = 0.003). All failures (100%) were adhesive in most groups. The frequency of adhesive failure was the lowest (90%) in Celtra Duo bonded to dual-cure cement with 4-META (5%). Conclusion: According to the results of this pilot study, the addition of 4-META (10%) to silane caused a significant improvement in µTBS to light-cure cement. The addition of 4-META in all concentrations significantly improved the µTBS to Enamic ceramic in the use of dual-cure cement; however, it had no significant effect on µTBS of Celtra Duo. Nonetheless, the results should be interpreted with caution due to the relatively small sample size.

2.
Dent Res J (Isfahan) ; 19: 81, 2022.
Article in English | MEDLINE | ID: mdl-36407780

ABSTRACT

Background: Graphene oxide (GO), a product of graphite, is a candidate for nano-reinforcing cement-based materials due to its good water dispersibility and excellent mechanical properties. On the other hand, zinc oxide (ZnO) is well-known for its antibacterial characteristics as well. Therefore, we aimed to evaluate the impacts of adding ZnO and GO nanoparticles on the antibacterial properties of flowable composites. Materials and Methods: In this, in vitro experimental study was designated into five groups containing: (1) no nanoparticles as control group, (2) 1 wt.% ZnO nanoparticle, (3) 1 wt.% GO, (4) 1 wt.% physical compound of ZnO and GO, and (5) 1 wt.% chemical compound of ZnO and GO. The antibacterial properties of composite resin discs were evaluated by direct contact test. Data were analyzed using a one-way analysis of variance, followed by Tukey' post hoc tests (P = 0.05). Results: Streptococcus mutans colony counting in the first 24 h showed the least growth rate in the chemical compound group (2.2 × 10[5]). However, in 7 days, the least colony number was observed in the GO group (2 × 10[3]). Moreover, the physical compound showed the least bacterial adhesion. Conclusion: Adding GO alone to composites, compared to adding ZnO or physical and chemical compounds of GO-ZnO, was more helpful to increase the antimicrobial characteristics.

3.
Front Dent ; 17(22): 1-7, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33615299

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effects of hydrofluoric acid (HF) concentration and etching time on the surface roughness (SR) and three-point flexural strength of Suprinity and to analyze the surface elements before and after etching. MATERIALS AND METHODS: To measure the SR, 70 specimens of Suprinity (2×4×5mm3) were assigned to seven groups (n=10). Six groups were etched for 20, 60, and 120 seconds with 5% and 10% HF and 7th group was the control group. Specimens were evaluated using atomic force microscopy (AFM). One specimen from each group was used to analyze the surface elements using scanning electron microscopy (SEM). For measuring the three-point flexural strength, 60 specimens were divided into six groups (n=10) and etched as previously described. The flexural strength was measured using a universal testing machine. T-test, one-way analysis of variance (ANOVA), and two-way ANOVA were used for statistical analyses (P<0.05). RESULTS: The 10% concentration of HF caused higher SR compared to the 5% HF. The effect of HF concentration on the flexural strength was significantly different in the 20- and 60-second etching groups. Different etching times had no significantly different effect on the SR. With 5% HF, the flexural strength was significantly higher for 20-second etching time than for the etching times of 60 and 120 seconds. With 10% HF, there was a significant difference in flexural strength between etching times of 20 and 120 seconds. The atomic percentage (at%) of silica was enhanced by increasing the etching time. CONCLUSION: The best surface etching protocol comprises 10% HF used for 20 seconds.

4.
Electron Physician ; 9(10): 5487-5493, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29238488

ABSTRACT

INTRODUCTION: Dental ceramics are appreciated as highly esthetic restorative materials that can simulate the appearance of natural dentition better than other materials. The aim of this study was to evaluate the effect of hydrofluoric acid concentration and etching time on micro-shear bond strength (µSBS) to IPS e.max CAD and Vita Mark II of a dual cured resin cement (Panavia F2.0). METHODS: This study was an experimental in vitro study, performed in the dental material research center of Babol University of Medical Sciences in 2016. Two hydrofluoric acid concentrations (5% and 10%) and three different etching times (20, 60 and 120 seconds) were used to etch the specimens respectively. A silane coupling agent (Clearfil porcelain activator) and priming and bonding agent (Clearfil SE bond) were used on the etched surfaces in accordance to the manufacturer's instructions of use. Then resin cement was applied on the prepared ceramic surfaces and light cured. µSBS between resin cement and the porcelains were measured with a universal testing machine. Mode of failure was observed with 40× magnification by means of a Stereo microscope. Data were analyzed with ANOVA and independent-samples t-test and Chi-square tests. RESULTS: In both e.max and Vita Mark II groups, µSBS were not significantly different when different etching times (one-way ANOVA) and HF acid concentrations (Independent-samples t-test) were used (p>0.05), but the highest µSBS was shown in e.max specimens etched 60 s with 5% HF and Vita Mark II specimens etched 20 s with 10% HF. µSBS of e.max was significantly higher than Vita Mark II (p=0.00). CONCLUSION: Best surface treatment for e.max and Vita Mark II ceramics is 20 s etch using 5 % hydrofluoric acid.

5.
Am J Orthod Dentofacial Orthop ; 146(4): 522-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25263155

ABSTRACT

INTRODUCTION: In this study, we aimed to measure the inclination of teeth on dental casts by a manual technique with the tooth inclination protractor (TIP; MBI, Newport, United Kingdom) and a newly designed 3-dimensional (3D) software program. The correlation of the 2 techniques was evaluated, and the reliability of each technique was assessed separately. METHODS: This study was conducted on 36 dental casts of normal, well-aligned Class I occlusions; we assessed 432 teeth. All casts had a normal Class I occlusion. After determining the facial axis of the clinical crown and the facial axis points on the dental casts, we measured the inclinations of the incisors and posterior teeth up to the first molars in each dental arch relative to Andrews' occlusal plane and the posterior occlusal plane using the TIP. Moreover, the casts were scanned by a structured-light 3D scanner. The inclination of teeth relative to the occlusal plane was determined using the new software. To assess the reliability, measurements of all teeth from 15 casts were repeated twice by the 2 methods. Intraclass correlation coefficient and Dahlberg's formula were used for calculation of correlation and reliability. RESULTS: Overall, the 2 techniques were not significantly different in the measurements of the inclinations of the teeth in both jaws. The ranges of Dahlberg's formula were 3.1° to 5.8° for the maxilla and 3.3° to 5.9° for the mandible. The overall correlation of the 2 techniques according to the intraclass correlation coefficient was 0.91. For calculation of reliability, the intraclass correlation coefficients for the TIP and the 3D method were 0.73 and 0.82, respectively. CONCLUSIONS: The TIP and the 3D software showed a high correlation for measurement of the inclinations of maxillary and mandibular teeth relative to the occlusal plane. Also, the reproducibility of the measurements in each method was high.


Subject(s)
Imaging, Three-Dimensional/statistics & numerical data , Odontometry/statistics & numerical data , Software/statistics & numerical data , Bicuspid/anatomy & histology , Computer Simulation , Cuspid/anatomy & histology , Dental Occlusion , Humans , Image Processing, Computer-Assisted/statistics & numerical data , Incisor/anatomy & histology , Mandible/anatomy & histology , Maxilla/anatomy & histology , Models, Anatomic , Models, Dental , Molar/anatomy & histology , Optical Imaging/statistics & numerical data , Reproducibility of Results , Tooth Crown/anatomy & histology , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...