Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Neurosci ; 8(6): 1242-1250, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28165217

ABSTRACT

In this study, the dopamine-lipid bilayer interactions were probed with three physiologically relevant ion compositions using atomistic molecular dynamics simulations and free energy calculations. The in silico results indicate that calcium is able to decrease significantly the binding of dopamine to a neutral (zwitterionic) phosphatidylcholine lipid bilayer model mimicking the inner leaflet of a presynaptic vesicle. We argue that the observed calcium-induced effect is likely in crucial role in the neurotransmitter release from the presynaptic vesicles docked in the active zone of nerve terminals. The inner leaflets of presynaptic vesicles, which are responsible for releasing neurotransmitters into the synaptic cleft, are mainly composed of neutral lipids such as phosphatidylcholine and phosphatidylethanolamine. The neutrality of the lipid head group region, enhanced by a low pH level, should limit membrane aggregation of transmitters. In addition, the simulations suggest that the high calcium levels inside presynaptic vesicles prevent even the most lipophilic transmitters such as dopamine from adhering to the inner leaflet surface, thus rendering unhindered neurotransmitter release feasible.


Subject(s)
Calcium/metabolism , Dopamine/metabolism , Presynaptic Terminals/metabolism , Synaptic Transmission/physiology , Lipid Bilayers/metabolism , Molecular Dynamics Simulation
2.
PLoS One ; 9(8): e103743, 2014.
Article in English | MEDLINE | ID: mdl-25157633

ABSTRACT

Bacterial cholesterol oxidase is commonly used as an experimental tool to reduce cellular cholesterol content. That the treatment also generates the poorly degradable metabolite 4-cholesten-3-one (cholestenone) has received less attention. Here, we investigated the membrane partitioning of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either cholesterol oxidase treated or part of cellular cholesterol was exchanged for cholestenone with cyclodextrin, cell migration during 22 h was markedly inhibited. Instead, when a similar fraction of cholesterol was removed using cyclodextrin, cells replenished their cholesterol content in 3 h and migrated similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone.


Subject(s)
Cell Membrane/metabolism , Cholestenones/metabolism , Cholesterol/metabolism , Fibroblasts/metabolism , Animals , Bacteria/enzymology , Cell Line , Cell Membrane Permeability , Cell Movement , Cells, Cultured , Cholesterol Oxidase/metabolism , Fibroblasts/cytology , Humans , Mice , Molecular Dynamics Simulation , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...