Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Inform ; 151: 104601, 2024 03.
Article in English | MEDLINE | ID: mdl-38307358

ABSTRACT

OBJECTIVE: The recent SARS-CoV-2 pandemic has exhibited diverse patterns of spread across countries and communities, emphasizing the need to consider the underlying population dynamics in modeling its progression and the importance of evaluating the effectiveness of non-pharmaceutical intervention strategies in combating viral transmission within human communities. Such an understanding requires accurate modeling of the interplay between the community dynamics and the disease propagation dynamics within the community. METHODS: We build on an interaction-driven model of an airborne disease over contact networks that we have defined. Using the model, we evaluate the effectiveness of temporal, spatial, and spatiotemporal social distancing policies. Temporal social distancing involves a pure dilation of the timeline while preserving individual activity potential and thus prolonging the period of interaction; spatial distancing corresponds to social distancing pods; and spatiotemporal distancing pertains to the situation in which fixed subgroups of the overall group meet at alternate times. We evaluate these social distancing policies over real-world interactions' data and over history-preserving synthetic temporal random networks. Furthermore, we evaluate the policies for the disease's with different number of initial patients, corresponding to either the phase in the progression of the infection through a community or the number of patients infected together at the initial infection event. We expand our model to consider the exposure to viral load, which we correlate with the meetings' duration. RESULTS: Our results demonstrate the superiority of decreasing social interactions (i.e., time dilation) within the community over partial isolation strategies, such as the spatial distancing pods and the spatiotemporal distancing strategy. In addition, we found that slow-spreading pathogens (i.e., pathogens that require a longer exposure to infect) spread roughly at the same rate as fast-spreading ones in highly active communities. This result is surprising since the pathogens may follow different paths. However, we demonstrate that the dilation of the timeline considerably slows the spread of the slower pathogens. CONCLUSIONS: Our results demonstrate that the temporal dynamics of a community have a more significant effect on the spread of the disease than the characteristics of the spreading processes.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Physical Distancing , SARS-CoV-2 , Pandemics , Policy
2.
Sci Rep ; 13(1): 12955, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563358

ABSTRACT

Interaction-driven modeling of diseases over real-world contact data has been shown to promote the understanding of the spread of diseases in communities. This temporal modeling follows the path-preserving order and timing of the contacts, which are essential for accurate modeling. Yet, other important aspects were overlooked. Various airborne pathogens differ in the duration of exposure needed for infection. Also, from the individual perspective, Covid-19 progression differs between individuals, and its severity is statistically correlated with age. Here, we enrich an interaction-driven model of Covid-19 and similar airborne viral diseases with (a) meetings duration and (b) personal disease progression. The enriched model enables predicting outcomes at both the population and the individual levels. It further allows predicting individual risk of engaging in social interactions as a function of the virus characteristics and its prevalence in the population. We further showed that the enigmatic nature of asymptomatic transmission stems from the latent effect of the network density on this transmission and that asymptomatic transmission has a substantial impact only in sparse communities.


Subject(s)
COVID-19 , Models, Theoretical , Humans , COVID-19/epidemiology , COVID-19/transmission
3.
PLoS One ; 18(1): e0280874, 2023.
Article in English | MEDLINE | ID: mdl-36701400

ABSTRACT

Epidemics and pandemics require an early estimate of the cumulative infection prevalence, sometimes referred to as the infection "Iceberg," whose tip are the known cases. Accurate early estimates support better disease monitoring, more accurate estimation of infection fatality rate, and an assessment of the risks from asymptomatic individuals. We find the Pivot group, the population sub-group with the highest probability of being detected and confirmed as positively infected. We differentiate infection susceptibility, assumed to be almost uniform across all population sub-groups at this early stage, from the probability of being confirmed positive. The latter is often related to the likelihood of developing symptoms and complications, which differs between sub-groups (e.g., by age, in the case of the COVID-19 pandemic). A key assumption in our method is the almost-random subgroup infection assumption: The risk of initial infection is either almost uniform across all population sub-groups or not higher in the Pivot sub-group. We then present an algorithm that, using the lift value of the pivot sub-group, finds a lower bound for the cumulative infection prevalence in the population, that is, gives a lower bound on the size of the entire infection "Iceberg." We demonstrate our method by applying it to the case of the COVID-19 pandemic. We use UK and Spain serological surveys of COVID-19 in its first year to demonstrate that the data are consistent with our key assumption, at least for the chosen pivot sub-group. Overall, we applied our methods to nine countries or large regions whose data, mainly during the early COVID-19 pandemic phase, were available: Spain, the UK at two different time points, New York State, New York City, Italy, Norway, Sweden, Belgium, and Israel. We established an estimate of the lower bound of the cumulative infection prevalence for each of them. We have also computed the corresponding upper bounds on the infection fatality rates in each country or region. Using our methodology, we have demonstrated that estimating a lower bound for an epidemic's infection prevalence at its early phase is feasible and that the assumptions underlying that estimate are valid. Our methodology is especially helpful when serological data are not yet available to gain an initial assessment on the prevalence scale, and more so for pandemics with an asymptomatic transmission, as is the case with Covid-19.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , Prevalence , Models, Statistical , New York City
4.
Sci Rep ; 12(1): 9616, 2022 06 10.
Article in English | MEDLINE | ID: mdl-35688869

ABSTRACT

The temporal dynamics of social interactions were shown to influence the spread of disease. Here, we model the conditions of progression and competition for several viral strains, exploring various levels of cross-immunity over temporal networks. We use our interaction-driven contagion model and characterize, using it, several viral variants. Our results, obtained on temporal random networks and on real-world interaction data, demonstrate that temporal dynamics are crucial to determining the competition results. We consider two and three competing pathogens and show the conditions under which a slower pathogen will remain active and create a second wave infecting most of the population. We then show that when the duration of the encounters is considered, the spreading dynamics change significantly. Our results indicate that when considering airborne diseases, it might be crucial to consider the duration of temporal meetings to model the spread of pathogens in a population.

5.
Front Immunol ; 12: 642673, 2021.
Article in English | MEDLINE | ID: mdl-33868278

ABSTRACT

The B cell population is highly diverse and very skewed. It is divided into clones (B cells with a common mother cell). It is thought that each clone represents an initial B cell receptor specificity. A few clones are very abundant, comprised of hundreds or thousands of B cells while the majority have only a few cells per clone. We suggest a novel method - domain-based latent personal analysis (LPA), a method for spectral exploration of entities in a domain, which can be used to find the spectral spread of sub repertoires within a person. LPA defines a domain-based spectral signature for each sub repertoire. LPA signatures consist of the elements, in our case - the clones, that most differentiate the sub repertoire from the person's abundance of clones. They include both positive elements, which describe overabundant clones, and negative elements that describe missing clones. The signatures can also be used to compare the sub repertoires they represent to each other. Applying LPA to compare the repertoires found in different tissues, we reiterated previous findings that showed that gut and blood tissues have separate repertoires. We further identify a third branch of clonal patterns typical of the lymphatic organs (Spleen, MLN, and bone marrow) separated from the other two categories. We developed a python version of LPA analysis that can easily be applied to compare clonal distributions - https://github.com/ScanLab-ossi/LPA. It could also be easily adapted to study other skewed sequence populations used in the analysis of B cell receptor populations, for instance, k-mers and V gene usage. These analysis types should allow for inter and intra-repertoire comparisons of diversity, which could revolutionize the way we understand repertoire changes and diversity.


Subject(s)
B-Lymphocytes/immunology , Clone Cells/immunology , Computer Simulation , Pattern Recognition, Automated/methods , Humans
6.
PLoS One ; 15(4): e0231035, 2020.
Article in English | MEDLINE | ID: mdl-32275671

ABSTRACT

Changes in the structure of observed social and complex networks can indicate a significant underlying change in an organization, or reflect the response of the network to an external event. Automatic detection of change points in evolving networks is rudimentary to the research and the understanding of the effect of such events on networks. Here we present an easy-to-implement and fast framework for change point detection in evolving temporal networks. Our method is size agnostic, and does not require either prior knowledge about the network's size and structure, nor does it require obtaining historical information or nodal identities over time. We tested it over both synthetic data derived from dynamic models and two real datasets: Enron email exchange and AskUbuntu forum. Our framework succeeds with both precision and recall and outperforms previous solutions.


Subject(s)
Models, Statistical , Social Networking , Humans , Interpersonal Relations , Statistics as Topic , Statistics, Nonparametric , Time Factors
7.
PLoS One ; 11(8): e0156505, 2016.
Article in English | MEDLINE | ID: mdl-27486847

ABSTRACT

The rich get richer principle, manifested by the Preferential attachment (PA) mechanism, is widely considered one of the major factors in the growth of real-world networks. PA stipulates that popular nodes are bound to be more attractive than less popular nodes; for example, highly cited papers are more likely to garner further citations. However, it overlooks the transient nature of popularity, which is often governed by trends. Here, we show that in a wide range of real-world networks the recent popularity of a node, i.e., the extent by which it accumulated links recently, significantly influences its attractiveness and ability to accumulate further links. We proceed to model this observation with a natural extension to PA, named Trending Preferential Attachment (TPA), in which edges become less influential as they age. TPA quantitatively parametrizes a fundamental network property, namely the network's tendency to trends. Through TPA, we find that real-world networks tend to be moderately to highly trendy. Networks are characterized by different susceptibilities to trends, which determine their structure to a large extent. Trendy networks display complex structural traits, such as modular community structure and degree-assortativity, occurring regularly in real-world networks. In summary, this work addresses an inherent trait of complex networks, which greatly affects their growth and structure, and develops a unified model to address its interaction with preferential attachment.


Subject(s)
Models, Theoretical , Bibliometrics , Humans , Social Networking
8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(6 Pt 2): 066108, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17280122

ABSTRACT

In this paper we model the tomography of scale-free networks by studying the structure of layers around an arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes from a specific network node consists of two regimes. The first is characterized by rapid growth, and the second decays exponentially. We also show analytically that the nodes degree distribution at each layer exhibits a power-law tail with an exponential cutoff. We obtain similar empirical results for the layers surrounding the root of shortest path trees cut from such networks, as well as the Internet.

SELECTION OF CITATIONS
SEARCH DETAIL
...