Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(9): 11950-11961, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32845615

ABSTRACT

Silica-coated nanoparticles are widely used in biomedical applications such as theranostics, imaging, and drug delivery. While silica-coated nanoparticles are biocompatible, experimental evidence shows that they can trigger innate immune reactions, and a broader understanding of what types of reactions are caused and how to mitigate them is needed. Herein, we investigated how the noncovalent surface functionalization of silica nanoparticles with purified proteins can inhibit nanoparticle-induced complement activation and macrophage uptake, two of the most clinically relevant innate immune reactions related to nanomedicines. Silica nanoparticles were tested alone and after coating with bovine serum albumin, human serum albumin, fibrinogen, complement factor H (FH), or immunoglobulin G (IgG) proteins. Enzyme-linked immunosorbent assays measuring the generation of various complement activation products indicated that silica nanoparticles induce complement activation via the alternative pathway. All protein coatings other than IgG protected against complement activation to varying extents. Most proteins acted as steric blockers to inhibit complement protein deposition on the nanoparticle surface, while FH coatings were biologically active and inhibited a key step in the amplification loop of complement activation, as confirmed by Western blot analysis. Flow cytometry and fluorescence microscopy experiments further revealed that complement activation-inhibiting protein coatings blunted macrophage uptake as well. Taken together, our findings demonstrate a simple and effective way to coat silica nanoparticles with purified protein coatings in order to mitigate innate immune reactions. Such methods are readily scalable and might constitute a useful strategy for improving the immunological safety profile of silica and silica-coated nanoparticles as well as other types of inorganic nanoparticles.


Subject(s)
Nanoparticles , Silicon Dioxide , Complement Activation , Complement System Proteins , Humans
2.
Sci Rep ; 10(1): 7491, 2020 05 04.
Article in English | MEDLINE | ID: mdl-32367064

ABSTRACT

Glycolic acid is the smallest alpha hydroxy acid and widely used for skincare applications, including to treat acne vulgaris. Oftentimes, high concentrations of glycolic acid (~20-50 vol%) are incorporated into chemical peels to reduce acne-related inflammation while there is an outstanding need to determine to what extent glycolic acid can potently inhibit Cutibacterium acnes (formerly known as Propionibacterium acnes), which is a Gram-positive bacterium implicated in acne pathogenesis. Herein, we report that glycolic acid exhibits pH-dependent antibacterial activity against C. acnes and mechanistic studies identified that the nonionic form of glycolic acid is more active than the anionic form. The degree of antibacterial activity, including minimum bactericidal concentration (MBC), of glycolic acid was evaluated in the pH range of 3 to 4.5, and the greatest potency was observed at pH 3. In light of skincare formulation needs, we selected the pH 3.5 condition for further testing and determined that glycolic acid kills C. acnes cells by disrupting bacterial cell membranes. While most conventional treatments involve high concentrations of glycolic acid (>20%), our findings support the potential of developing anti-acne formulations with glycolic acid concentrations as low as 0.2% and with pH conditions that are suitable for over-the-counter applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Glycolates/pharmacology , Propionibacterium acnes/growth & development , Acne Vulgaris/drug therapy , Acne Vulgaris/microbiology , Humans , Hydrogen-Ion Concentration
3.
Nat Commun ; 11(1): 1449, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193375

ABSTRACT

Pollen's practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.


Subject(s)
Materials Science , Microgels/chemistry , Pollen/chemistry , Biomimetics/methods , Computational Chemistry , Epitopes/chemistry , Epitopes/immunology , Esterification , Hardness , Hydrolysis , Hydroxides/chemistry , Microscopy, Fluorescence , Pectins/chemistry , Pectins/immunology , Pollen/immunology , Pollination/physiology , Potassium Compounds/chemistry , Spectroscopy, Fourier Transform Infrared
4.
Langmuir ; 35(9): 3568-3575, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30720282

ABSTRACT

Monoglycerides are esterified adducts of fatty acid and glycerol molecules that disrupt phospholipid membranes, leading to a wide range of biological functions such as antimicrobial activity. Among monoglycerides, glycerol monolaurate (GML) exhibits particularly high antimicrobial activity, although enzymatic hydrolysis of its ester group can diminish potency. Consequently, there have been efforts to identify more chemically stable versions of GML, most notably its alkylglycerol ether equivalent called dodecylglycerol (DDG). However, despite high structural similarity, biological studies indicate that DDG and GML are not functionally equivalent and it has been speculated that the two compounds might have different interaction profiles with phospholipid membranes. To address this outstanding question, herein, we employed supported lipid bilayer (SLB) platforms to experimentally characterize the interactions of DDG with phospholipid membranes. Quartz crystal microbalance-dissipation experiments identified that DDG causes concentration-dependent membrane morphological changes in SLBs and the overall extent of membrane remodeling events was greater than that caused by GML. In addition, time-lapsed fluorescence microscopy imaging experiments revealed that DDG causes extensive membrane tubulation that is distinct from how GML induces membrane budding. We discuss how differences in the head group properties of DDG and GML contribute to distinct membrane interaction profiles, offering insight into how the molecular design of DDG not only improves chemical stability but also enhances membrane-disruptive activity.


Subject(s)
Cell Membrane/drug effects , Glyceryl Ethers/pharmacology , Laurates/pharmacology , Lipid Bilayers/chemistry , Monoglycerides/pharmacology , Cell Line , Cell Survival/drug effects , Glyceryl Ethers/chemistry , Glyceryl Ethers/toxicity , Humans , Laurates/chemistry , Laurates/toxicity , Microscopy, Fluorescence , Monoglycerides/chemistry , Monoglycerides/toxicity , Phosphatidylcholines/chemistry , Quartz Crystal Microbalance Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...