Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985577

ABSTRACT

A soft synthesis of nanoceria with non-stoichiometric composition (33% Ce3+/67% Ce4+) named CeO2 NPs in bacterial cellulose (BC) matrix in the form of aerogel and hydrogel with controlled CeO2 NPs content was proposed. The advantage of CeO2 NPs synthesis in BC is the use of systemic antacid API-trisamine as a precursor, which did not destruct cellulose at room temperature and enabled a reduction in the duration of synthesis and the number of washes. Moreover, this method resulted in the subsequent uniform distribution of CeO2 NPs in the BC matrix due to cerium (III) nitrate sorption in the BC matrix. CeO2 NPs (0.1-50.0%) in the BC matrix had a fluorite structure with a size of 3-5 nm; the specific surface area of the composites was 233.728 m2/g. CeO2 NPs in the BC-CeO2 NPs composite demonstrated SOD-like activity in the processes of oxidation and reduction of cytochrome c (cyt c3+/cyt c2+), as well as epinephrine to inhibit its auto-oxidation in aqueous solutions by 33-63% relative to the control. In vitro experiments on rat blood showed a decrease in the MDA level and an increase in the activity of antioxidant defense enzymes-SOD by 24% and G6PDH by 2.0-2.5 times. Therefore, BC-CeO2 NPs can be proposed for wound healing as antioxidant material.


Subject(s)
Cerium , Metal Nanoparticles , Nanoparticles , Rats , Animals , Antioxidants , Nanoparticles/chemistry , Cerium/pharmacology , Cerium/chemistry , Superoxide Dismutase , Metal Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...